论文标题

放松I.I.D.假设:通过根部纳入正则化适应性的最小值最佳遗憾

Relaxing the I.I.D. Assumption: Adaptively Minimax Optimal Regret via Root-Entropic Regularization

论文作者

Bilodeau, Blair, Negrea, Jeffrey, Roy, Daniel M.

论文摘要

当从未知约束集中任意变化的分布中生成数据时,我们会考虑使用专家建议的预测。这种半反向的设置包括(在极端)经典的I.I.D.设置时,当未知约束集限制为单身人士时,当约束集是所有分布的集合时,不受约束的对抗设置。对冲状态中,对冲算法(长期以来已知是最佳的最佳速率(速率))最近被证明是同时对I.I.D.数据。在这项工作中,我们建议放松I.I.D.通过在约束集的所有自然顺序上寻求适应性来假设。我们在各个级别的Minimax遗憾中提供匹配的上和下界,表明确定性学习率的对冲在极端外是次优的,并证明可以在各个层面上适应地获得Minimax的遗憾。我们使用以下规范化领导者(FTRL)框架实现了这种最佳适应性,并采用了一种新型的自适应正则化方案,将其隐式缩放为当前预测分布的熵的平方根,而不是初始预测分布的熵。最后,我们提供了新型的技术工具来研究FTRL沿半逆转频谱的统计性能。

We consider prediction with expert advice when data are generated from distributions varying arbitrarily within an unknown constraint set. This semi-adversarial setting includes (at the extremes) the classical i.i.d. setting, when the unknown constraint set is restricted to be a singleton, and the unconstrained adversarial setting, when the constraint set is the set of all distributions. The Hedge algorithm -- long known to be minimax (rate) optimal in the adversarial regime -- was recently shown to be simultaneously minimax optimal for i.i.d. data. In this work, we propose to relax the i.i.d. assumption by seeking adaptivity at all levels of a natural ordering on constraint sets. We provide matching upper and lower bounds on the minimax regret at all levels, show that Hedge with deterministic learning rates is suboptimal outside of the extremes, and prove that one can adaptively obtain minimax regret at all levels. We achieve this optimal adaptivity using the follow-the-regularized-leader (FTRL) framework, with a novel adaptive regularization scheme that implicitly scales as the square root of the entropy of the current predictive distribution, rather than the entropy of the initial predictive distribution. Finally, we provide novel technical tools to study the statistical performance of FTRL along the semi-adversarial spectrum.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源