论文标题
满足中子物质中的可压缩总和规则
Satisfying the compressibility sum rule in neutron matter
论文作者
论文摘要
强烈相互作用的中子物质的静态反应函数包含有关这种相互作用的多粒子系统的重要信息,超越了地面特性。在目前的工作中,我们使用现象学能力和(首次)手性有效的田间理论相互作用来解决几种不同密度的量子蒙特卡洛(QMC)方法。我们通过周期性体积的8250个颗粒来处理有限尺寸的效果(EDF)计算。我们将这些QMC和EDF计算结合在一起,以尝试产生静态响应函数的模型独立提取。我们的结果与可压缩总和规则一致,该规则封装了从状态的均匀方程开始的响应函数的限制行为,而无需使用总规则作为输入约束。我们对不均匀中子物质的预测可以用作其他多体方法的基准,从而散发出对中子星形壳和富含中子的核的物理学的光。
The static-response function of strongly interacting neutron matter contains crucial information on this interacting many-particle system, going beyond ground-state properties. In the present work, we tackle this problem with quantum Monte Carlo (QMC) approaches at several different densities, using both phenomenological forces and (for the first time) chiral effective field theory interactions. We handle finite-size effects via self-consistent energy-density functional (EDF) calculations for 8250 particles in a periodic volume. We combine these QMC and EDF computations in an attempt to produce a model-independent extraction of the static response function. Our results are consistent with the compressibility sum rule, which encapsulates the limiting behavior of the response function starting from the homogeneous equation of state, without using the sum rule as an input constraint. Our predictions on inhomogeneous neutron matter can function as benchmarks for other many-body approaches, thereby shedding light on the physics of neutron-star crusts and neutron-rich nuclei.