论文标题

UnrectDepthnet:使用通用框架来处理常见摄像机失真模型的自我监督的单眼深度估计

UnRectDepthNet: Self-Supervised Monocular Depth Estimation using a Generic Framework for Handling Common Camera Distortion Models

论文作者

Kumar, Varun Ravi, Yogamani, Senthil, Bach, Markus, Witt, Christian, Milz, Stefan, Mader, Patrick

论文摘要

在经典的计算机视觉中,纠正是多视图深度估计的组成部分。它通常包括表现整流和透镜失真校正。该过程大大简化了深度估计,因此已在CNN方法中采用了深度估计。但是,纠正具有多种副作用,包括降低的视场(FOV),重新采样变形以及对校准误差的敏感性。在发生严重失真的情况下(例如,广角鱼眼相机)特别明显。在本文中,我们提出了一条通用的量表自我监督管道,以估算未经启示的单眼视频的深度,欧几里得距离和视觉探光。我们演示了与矫正KITTI数据集相当的枪管失真的未化为Kitti数据集上的相似精度。直觉是,可以隐式地吸收CNN模型中的纠正步骤,该模型在不增加复杂性的情况下学习了失真模型。我们的方法不会遭受降低的视野的困扰,并避免了推理时进行纠正的计算成本。为了进一步说明所提出的框架的一般适用性,我们将其应用于具有190 $^\ Circ $水平视野的广角鱼眼相机。训练框架UntrectDepthnet将相机失真模型作为参数采用,并相应地调整投影和未投影功能。提出的算法在Kitti纠正数据集上进行了进一步评估,我们获得了最先进的结果,以改善我们先前的Fisheyedistancenet的工作。扭曲的测试场景视频序列上的定性结果表明出色的性能https://youtu.be/k6pbx3bu4ss。

In classical computer vision, rectification is an integral part of multi-view depth estimation. It typically includes epipolar rectification and lens distortion correction. This process simplifies the depth estimation significantly, and thus it has been adopted in CNN approaches. However, rectification has several side effects, including a reduced field of view (FOV), resampling distortion, and sensitivity to calibration errors. The effects are particularly pronounced in case of significant distortion (e.g., wide-angle fisheye cameras). In this paper, we propose a generic scale-aware self-supervised pipeline for estimating depth, euclidean distance, and visual odometry from unrectified monocular videos. We demonstrate a similar level of precision on the unrectified KITTI dataset with barrel distortion comparable to the rectified KITTI dataset. The intuition being that the rectification step can be implicitly absorbed within the CNN model, which learns the distortion model without increasing complexity. Our approach does not suffer from a reduced field of view and avoids computational costs for rectification at inference time. To further illustrate the general applicability of the proposed framework, we apply it to wide-angle fisheye cameras with 190$^\circ$ horizontal field of view. The training framework UnRectDepthNet takes in the camera distortion model as an argument and adapts projection and unprojection functions accordingly. The proposed algorithm is evaluated further on the KITTI rectified dataset, and we achieve state-of-the-art results that improve upon our previous work FisheyeDistanceNet. Qualitative results on a distorted test scene video sequence indicate excellent performance https://youtu.be/K6pbx3bU4Ss.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源