论文标题
H-Vgrae:一种层次随机时空嵌入方法,用于在动态网络中鲁棒异常检测
H-VGRAE: A Hierarchical Stochastic Spatial-Temporal Embedding Method for Robust Anomaly Detection in Dynamic Networks
论文作者
论文摘要
在社交媒体,计算机网络等各个领域,在动态网络中检测异常边缘和节点至关重要。最近的方法利用网络嵌入技术来学习如何为正常训练样本生成节点表示,并检测出与正常模式偏离的异常。但是,大多数现有的网络嵌入方法都学习确定性节点表示,这对于动态网络的灵活性和随机性高,对拓扑和属性的波动敏感。在本文中,提出了由层次变化图复发器(H-Vgrae)命名的随机神经网络,提议通过以随机变量的形式通过学习的强大节点表示在动态网络中检测异常。 H-Vgrae是一种半监督模型,可通过通过变异推理最大化邻接矩阵和节点属性的可能性来捕获训练中的正常模式。与现有方法相比,H-Vgrae具有三个主要优点:1)H-Vgrae通过随机性建模和提取多规模空间 - 暂时性特征来学习强大的节点表示; 2)随着动态网络量表的增加,H-Vgrae可以扩展到深层结构; 3)从概率的角度可以找到和解释异常的边缘和节点。与最先进的竞争对手相比,在四个现实世界数据集上进行了广泛的实验表明,在动态网络中,H-Vgrae在动态网络中的表现要出色。
Detecting anomalous edges and nodes in dynamic networks is critical in various areas, such as social media, computer networks, and so on. Recent approaches leverage network embedding technique to learn how to generate node representations for normal training samples and detect anomalies deviated from normal patterns. However, most existing network embedding approaches learn deterministic node representations, which are sensitive to fluctuations of the topology and attributes due to the high flexibility and stochasticity of dynamic networks. In this paper, a stochastic neural network, named by Hierarchical Variational Graph Recurrent Autoencoder (H-VGRAE), is proposed to detect anomalies in dynamic networks by the learned robust node representations in the form of random variables. H-VGRAE is a semi-supervised model to capture normal patterns in training set by maximizing the likelihood of the adjacency matrix and node attributes via variational inference. Comparing with existing methods, H-VGRAE has three main advantages: 1) H-VGRAE learns robust node representations through stochasticity modeling and the extraction of multi-scale spatial-temporal features; 2) H-VGRAE can be extended to deep structure with the increase of the dynamic network scale; 3) the anomalous edge and node can be located and interpreted from the probabilistic perspective. Extensive experiments on four real-world datasets demonstrate the outperformance of H-VGRAE on anomaly detection in dynamic networks compared with state-of-the-art competitors.