论文标题
晶格动力学研究的有效对称性原子位移方法
Efficacious symmetry-adapted atomic displacement method for lattice dynamical studies
论文作者
论文摘要
小型位移方法已成功用于计算晶体的晶格动力学特性。它涉及少量置换原子,以计算超级电池中所有原子上的诱导力以计算力常数。据我们所知,即使这些方法广泛使用,也没有系统地讨论从晶体的对称性角度来看的最佳位移方向,也没有对此类方法进行严格的误差分析。基于晶体的群体理论和点组对称性,我们提出了位移方向,具有等效的$ k $概念,直接推导在笛卡尔坐标中,而不是通常的分数坐标,以维持由三个位移所跨越三个位移的理论最大值,以避免可能的圆形循环。提出的位移方向是由最小的一组不可约原子位移产生的,这些位移将所需的独立力计算保持在最低限度。我们发现计算出的力常数中的误差明确取决于$ v $的逆和力的不准确性。 SI,石墨烯和原骨SB2S3等测试系统用于说明该方法。由于晶格参数的巨大差异,使用较大的真空高度或非常倾斜的单位电池,因此我们的位移方法在处理具有较大“纵横比”的低对称性细胞方面非常强大,这是非常强大的。可以预期,我们的位移策略可用于解决高阶间相互作用,以实现良好的准确性和效率。
Small displacement methods have been successfully used to calculate the lattice dynamical properties of crystals. It involves displacing atoms by a small amount in order to calculate the induced forces on all atoms in a supercell for the computation of force constants. Even though these methods are widely in use, to our knowledge, there is no systematic discussion of optimal displacement directions from the crystal's symmetry point of view nor a rigorous error analysis of such methods. Based on the group theory and point group symmetry of a crystal, we propose displacement directions, with an equivalent concept of the group of $k$, deduced directly in the Cartesian coordinates rather than the usual fractional coordinates, that maintain the theoretical maximum for the triple product $V$ spanned by the three displacements to avoid possible severe roundoff errors. The proposed displacement directions are generated from a minimal set of irreducible atomic displacements that keep the required independent force calculations to a minimum. We find the error in the calculated force constant explicitly depends on the inverse of $V$ and inaccuracy of the forces. Test systems such as Si, graphene, and orthorhombic Sb2S3 are used to illustrate the method. Our displacement method is shown to be very robust in treating low-symmetry cells with a large `aspect ratio' due to huge differences in lattice parameters, use of a large vacuum height, or a very oblique unit cell due to unconventional choice of primitive lattice vectors. It is expected that our displacement strategy can be used to address higher-order interatomic interactions to achieve good accuracy and efficiency.