论文标题

简单多面体的角度总和

Angle sums of simplicial polytopes

论文作者

Manecke, Sebastian

论文摘要

多层人士的内部角度矢量($ \wideHatα$ - 矢量)是$ f $ - 矢量的度量类似物,其中面部面部由它们的固体角度加权。对于简单的多型,Sommerville(1927)和Höhn(1953)引入了$ \widehatα$ - vector上的Dehn-Sommerville型关系。 Camenga(2006)定义了$ \wideHatγ$ - 向量,这是一种类似于$ h $ vector的线性转换,并猜想它是非负的。使用几何和代数组合制剂中的工具,我们证明了这一猜想,并表明$ \wideHatγ$ - 矢量在上半年增加,并且是完美无瑕的。与$ h $ - 矢量相反,我们构建了一个六维多层,其非偶像$ \widehatγ$ - vector。更一般而言,当固体角度被简单和非负锥估值取代时,所有结果均保持有效。

The interior angle vector ($\widehatα$-vector) of a polytope is a metric analogue of the $f$-vector in which faces are weighted by their solid angle. For simplicial polytopes, Dehn-Sommerville-type relations on the $\widehatα$-vector were introduced by Sommerville (1927) and Höhn (1953). Camenga (2006) defined the $\widehatγ$-vector, a linear transformation analogous to the $h$-vector and conjectured it to be non-negative. Using tools from geometric and algebraic combinatorics, we prove this conjecture and show that the $\widehatγ$-vector increases in the first half and is flawless. In contrast to the $h$-vector, we construct a six-dimensional polytope with non-unimodal $\widehatγ$-vector. More generally, all result remain valid when solid angles are replaced by simple and non-negative cone valuations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源