论文标题

非隔离性超表面奇点的消失的共同体学

The vanishing cohomology of non-isolated hypersurface singularities

论文作者

Maxim, Laurenţiu, Păunescu, Laurenţiu, Tibăr, Mihai

论文摘要

我们采用了不正当消失的周期,以表明,除了顶部两个纤维以外的每个降低的米尔诺纤维的共同体学组可以从消失循环复合物的限制到只有一定尺寸的单一阶层。在几何结果的指导下,我们交替使用附近和消失的循环函子通过通用超平面的迭代切片来得出有关Milnor纤维的共同体的信息。这些导致了减少的共同体学组的描述,除了前两个方面,附近部分消失了。我们使用它来明确计算MILNOR纤维的最低(可能是非平地)消失的共同体学组。

We employ the perverse vanishing cycles to show that each reduced cohomology group of the Milnor fiber, except the top two, can be computed from the restriction of the vanishing cycle complex to only singular strata with a certain lower bound in dimension. Guided by geometric results, we alternately use the nearby and vanishing cycle functors to derive information about the Milnor fiber cohomology via iterated slicing by generic hyperplanes. These lead to the description of the reduced cohomology groups, except the top two, in terms of the vanishing cohomology of the nearby section. We use it to compute explicitly the lowest (possibly nontrivial) vanishing cohomology group of the Milnor fiber.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源