论文标题
谎言h-peudobialgebra的联想类比
An associative analogy of Lie H-pseudobialgebra
论文作者
论文摘要
本文的目的是研究无穷小的H-Pseudobialgebra,这是Lie H-Pseudobialgebra的关联类比。我们首先定义了无限的H-Pseudobialgebra,并研究了这种新代数结构的某些特性。然后,我们考虑无限的无限H-pseudobialgebra,它是无限h-pseudobialgebra的子类,我们在关联H-pseudoalgebra上获得了关联的Yang-baxter方程。最后,我们发现(固定)无限的H-Pseudobialgebra和(串联)Lie H-Pseudobialgebra之间的联系。同时,建立了关联的杨巴克斯特方程与经典的Yang-baxter方程(在H-peudoalgebra上)之间的关系。
The purpose of this paper is to study infinitesimal H-pseudobialgebra, which is an associative analogy of Lie H-pseudobialgebra. We first define the infinitesimal H-pseudobialgebra and investigate some properties of this new algebraic structure. Then we consider the coboundary infinitesimal H-pseudobialgebra, which is the subclass of infinitesimal H-pseudobialgebra and we obtain the associative Yang-Baxter equation over an associative H-pseudoalgebra. Finally, we found the connection between the (coboundary) infinitesimal H-pseudobialgebra and the (coboundary) Lie H-pseudobialgebra. Meanwhile, the relationship between the associative Yang-Baxter equation and the classical Yang-Baxter equation (over an H-pseudoalgebra) is established.