论文标题
在纳米质系统中控制热电子空间和动量分布:体积与表面效应
Controlling Hot Electron Spatial and Momentum Distributions in Nanoplasmonic Systems: Volume versus Surface Effects
论文作者
论文摘要
纳米质系统中的热载体空间和动量分布敏感地取决于光激发参数和纳米级的几何形状,因此决定了等离子体增强催化剂,光伏和纳米热的效率和功能。在过去的十年中,对这种系统的体积和表面介导的光激发和电子发射之间的区别的增长凸显了这两个过程的直接机械洞察力和量化的需求。为此,我们使用角度分辨的光电速度映射来直接区分纳米质子热电子发射与金纳米棒的体积和表面贡献作为纵横比的函数,直到球形极限。由于弹道蒙特卡洛建模复制,沿其纵向等离子体轴激发的纳米棒表现出令人惊讶的横向光发射分布。我们进一步证明了筛选引起的从体积(横向)到表面(纵向)光发射的过渡,并通过兴奋激光器的红色解谐,并通过结合体积和表面多光光发射模型来确定两种机制的相对跨截面。基于这些结果,我们能够确定对光发射横截面的几何形状和特定于材料的贡献,并提供了设计纳米质系统以控制热电子激发和排放分布的一般原理。
Hot carrier spatial and momentum distributions in nanoplasmonic systems depend sensitively on the optical excitation parameters and nanoscale geometry, which therefore determine the efficiency and functionality of plasmon-enhanced catalysts, photovoltaics, and nanocathodes. A growing appreciation over the past decade for the distinction between volume- and surface-mediated photoexcitation and electron emission from such systems has underscored the need for direct mechanistic insight and quantification of these two processes. Toward this end, we use angle-resolved photoelectron velocity mapping to directly distinguish volume and surface contributions to nanoplasmonic hot electron emission from gold nanorods as a function of aspect ratio, down to the spherical limit. Nanorods excited along their longitudinal surface plasmon axis exhibit surprising transverse photoemission distributions due to the dominant volume excitation mechanisms, as reproduced via ballistic Monte Carlo modelling. We further demonstrate a screening-induced transition from volume (transverse) to surface (longitudinal) photoemission with red detuning of the excitation laser and determine the relative cross-sections of the two mechanisms via combined volume and surface multiphoton photoemission modelling. Based on these results, we are able to identify geometry- and material-specific contributions to the photoemission cross-sections and offer general principles for designing nanoplasmonic systems to control hot electron excitation and emission distributions.