论文标题

Fenton-Wilkinson订单统计数据:定向运动的案例研究

Ordinal Regression with Fenton-Wilkinson Order Statistics: A Case Study of an Orienteering Race

论文作者

Pääkkönen, Joonas

论文摘要

在运动中,个人和团队通常对最终排名感兴趣。最终结果(例如时间或距离)决定了这些排名,也称为地方。位置可以与有序的随机变量进一步相关,通常称为订单统计。在这项工作中,我们引入了一个简单但准确的阶统计序列回归函数,该功能可以通过转换时间预测接力赛场所。我们称此功能为Fenton-Wilkinson订单统计模型。该模型建立在以下受过良好教育的假设上:单个腿部时间遵循对数正态分布。此外,我们的关键想法是使用Fenton-Wilkinson的转换时间近似,以及估算员总数的总数,如臭名昭著的德国坦克问题。这个原始的位置回归函数是sigmoidal,因此正确预测了少数精英团队的存在,这些团队的其余团队的表现都显着胜过其余的团队。我们的模型还描述了位置在对数正态分布函数的拐点处的转换时间的线性增加。借助大量定向接力赛Jukola 2019的真实数据,即使训练集的大小仅占整个数据集的5%,该模型也被证明是高度准确的。数值结果还表明,我们的模型比线性回归,MORD回归和高斯过程回归表现出较小的位置预测根平方轨道。

In sports, individuals and teams are typically interested in final rankings. Final results, such as times or distances, dictate these rankings, also known as places. Places can be further associated with ordered random variables, commonly referred to as order statistics. In this work, we introduce a simple, yet accurate order statistical ordinal regression function that predicts relay race places with changeover-times. We call this function the Fenton-Wilkinson Order Statistics model. This model is built on the following educated assumption: individual leg-times follow log-normal distributions. Moreover, our key idea is to utilize Fenton-Wilkinson approximations of changeover-times alongside an estimator for the total number of teams as in the notorious German tank problem. This original place regression function is sigmoidal and thus correctly predicts the existence of a small number of elite teams that significantly outperform the rest of the teams. Our model also describes how place increases linearly with changeover-time at the inflection point of the log-normal distribution function. With real-world data from Jukola 2019, a massive orienteering relay race, the model is shown to be highly accurate even when the size of the training set is only 5% of the whole data set. Numerical results also show that our model exhibits smaller place prediction root-mean-square-errors than linear regression, mord regression and Gaussian process regression.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源