论文标题

使用深卷积神经网络从USGS历史地图系列中自动提取道路交叉点

Automatic extraction of road intersection points from USGS historical map series using deep convolutional neural networks

论文作者

Saeedimoghaddam, Mahmoud, Stepinski, T. F.

论文摘要

道路交叉点数据已在不同的地理空间应用和分析中使用。预期年限的路网络数据集仅以历史印刷地图的形式获得。在可以通过GIS软件进行分析之前,需要扫描并转换为基于矢量的格式。由于大量扫描历史地图,需要使用将它们转换为数字数据集的自动化方法。通常,此过程基于计算机视觉算法。但是,低质量和视觉上复杂地图以及设置最佳参数的低转换精度是使用这些算法的两个挑战。在本文中,我们采用了使用深卷积神经网络用于基于区域CNN的对象检测任务的标准范式,以自动识别美国几个城市的扫描历史USGS地图中的道路交叉点。我们发现,与单线图相比,该算法对于路线图的双线制图表示的转换精度更高。同样,与大多数传统的计算机视觉算法相比,RCNN提供了更准确的提取。最后,结果表明,检测输出中的误差量对地图的复杂性和模糊以及其中不同的RGB组合的数量敏感。

Road intersections data have been used across different geospatial applications and analysis. The road network datasets dating from pre-GIS years are only available in the form of historical printed maps. Before they can be analyzed by a GIS software, they need to be scanned and transformed into the usable vector-based format. Due to the great bulk of scanned historical maps, automated methods of transforming them into digital datasets need to be employed. Frequently, this process is based on computer vision algorithms. However, low conversion accuracy for low quality and visually complex maps and setting optimal parameters are the two challenges of using those algorithms. In this paper, we employed the standard paradigm of using deep convolutional neural network for object detection task named region-based CNN for automatically identifying road intersections in scanned historical USGS maps of several U.S. cities. We have found that the algorithm showed higher conversion accuracy for the double line cartographic representations of the road maps than the single line ones. Also, compared to the majority of traditional computer vision algorithms RCNN provides more accurate extraction. Finally, the results show that the amount of errors in the detection outputs is sensitive to complexity and blurriness of the maps as well as the number of distinct RGB combinations within them.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源