论文标题

具有替代能量模型放松的原子结构学习算法

Atomistic Structure Learning Algorithm with surrogate energy model relaxation

论文作者

Mortensen, Henrik Lund, Meldgaard, Søren Ager, Bisbo, Malthe Kjær, Christiansen, Mads-Peter V., Hammer, Bjørk

论文摘要

最近提出的原子结构学习算法(ASLA)建立在神经网络上,使图像识别和增强学习。当与第一原理结合使用时,它可以实现完全自主的结构确定,例如密度功能理论(DFT)程序。为了节省计算要求,Asla以单点模式使用DFT程序,即不允许根据DFT级别的力信息放松结构候选者。在这项工作中,我们增加了Asla,以与其结构搜索同时建立替代能量模型。这可以通过计算昂贵的DFT程序进行单点能量评估之前的结构候选者的近似但计算廉价的放松。我们证明,在利用替代能源景观的同时,我们证明了ASLA的性能显着提高。此外,我们在对Ag(111)表面氧化物的C(4x8)相的彻底研究中应用了这种模型增强的ASLA。 Asla成功地识别了表面重建,该表面重建以前仅在扫描隧道显微镜图像的基础上被猜测。

The recently proposed Atomistic Structure Learning Algorithm (ASLA) builds on neural network enabled image recognition and reinforcement learning. It enables fully autonomous structure determination when used in combination with a first-principles total energy calculator, e.g. a density functional theory (DFT) program. To save on the computational requirements, ASLA utilizes the DFT program in a single-point mode, i.e. without allowing for relaxation of the structural candidates according to the force information at the DFT level. In this work, we augment ASLA to establish a surrogate energy model concurrently with its structure search. This enables approximative but computationally cheap relaxation of the structural candidates before the single-point energy evaluation with the computationally expensive DFT program. We demonstrate a significantly increased performance of ASLA for building benzene while utilizing a surrogate energy landscape. Further we apply this model-enhanced ASLA in a thorough investigation of the c(4x8) phase of the Ag(111) surface oxide. ASLA successfully identifies a surface reconstruction which has previously only been guessed on the basis of scanning tunnelling microscopy images.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源