论文标题

FetchSGD:素描的沟通效率的联合学习

FetchSGD: Communication-Efficient Federated Learning with Sketching

论文作者

Rothchild, Daniel, Panda, Ashwinee, Ullah, Enayat, Ivkin, Nikita, Stoica, Ion, Braverman, Vladimir, Gonzalez, Joseph, Arora, Raman

论文摘要

现有的联邦学习方法遭受了沟通瓶颈以及由于客户参与稀少而导致的融合问题。在本文中,我们介绍了一种名为FetchSGD的新颖算法,以克服这些挑战。 FetchSGD使用计数草图压缩模型更新,然后利用草图的合并性结合了许多工人的模型更新。 FetchSGD设计的一个关键见解是,因为计数草图是线性的,所以动量和错误积累都可以在草图中进行。这使算法可以将势头和错误积累从客户端移动到中央聚合器,从而克服了稀疏客户参与的挑战,同时仍达到高压率和良好的收敛性。我们证明FetchSGD具有良好的收敛保证,我们通过训练两个残留网络和一个变压器模型来证明其经验有效性。

Existing approaches to federated learning suffer from a communication bottleneck as well as convergence issues due to sparse client participation. In this paper we introduce a novel algorithm, called FetchSGD, to overcome these challenges. FetchSGD compresses model updates using a Count Sketch, and then takes advantage of the mergeability of sketches to combine model updates from many workers. A key insight in the design of FetchSGD is that, because the Count Sketch is linear, momentum and error accumulation can both be carried out within the sketch. This allows the algorithm to move momentum and error accumulation from clients to the central aggregator, overcoming the challenges of sparse client participation while still achieving high compression rates and good convergence. We prove that FetchSGD has favorable convergence guarantees, and we demonstrate its empirical effectiveness by training two residual networks and a transformer model.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源