论文标题

在不确定性的情况下,双向救灾的申请

Bi-objective facility location under uncertainty with an application in last-mile disaster relief

论文作者

Nazemi, Najmesadat, Parragh, Sophie N., Gutjahr, Walter J.

论文摘要

受数据不确定性的多重且通常是冲突的目标是许多现实世界中的主要特征。因此,在实践中,决策者需要考虑不同级别的不确定性以选择合适的解决方案,因此需要了解目标之间的权衡。在本文中,我们将两阶段的双目标单源电容模型视为设计灾害救济中最后一英里网络的基础配方,其中一个目标可能会符合需求不确定性。我们分析了基于方案的两阶段风险中性随机编程,适应性(两阶段)鲁棒优化以及使用条件价值危险风险(CVAR)进行两阶段风险的随机方法。为了应对问题的双向目标,我们将这些概念嵌入了两个标准空间搜索框架中,即$ε$ -constraint方法和平衡的盒子方法,以确定帕累托边境。此外,开发了一种数学技术,以获得大型实例的帕累托边境的高质量近似。在广泛的计算实验中,我们根据塞内加尔的干旱案例中的现实世界数据进行评估和比较应用方法的性能。

Multiple and usually conflicting objectives subject to data uncertainty are main features in many real-world problems. Consequently, in practice, decision-makers need to understand the trade-off between the objectives, considering different levels of uncertainty in order to choose a suitable solution. In this paper, we consider a two-stage bi-objective single source capacitated model as a base formulation for designing a last-mile network in disaster relief where one of the objectives is subject to demand uncertainty. We analyze scenario-based two-stage risk-neutral stochastic programming, adaptive (two-stage) robust optimization, and a two-stage risk-averse stochastic approach using conditional value-at-risk (CVaR). To cope with the bi-objective nature of the problem, we embed these concepts into two criterion space search frameworks, the $ε$-constraint method and the balanced box method, to determine the Pareto frontier. Additionally, a matheuristic technique is developed to obtain high-quality approximations of the Pareto frontier for large-size instances. In an extensive computational experiment, we evaluate and compare the performance of the applied approaches based on real-world data from a Thies drought case, Senegal.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源