论文标题
半线上的反向散射离散
Discretization of inverse scattering on a half line
论文作者
论文摘要
我们解决了半线上具有紧凑型电势的Schrödinger操作员的逆散射问题。我们离散S-Matrix:我们将S-Matrix的值在某些无限的正实数序列上进行。使用从S-Matrix获得的此序列,我们通过新的显式公式恢复了电势,而无需Gelfand-Levitan-Marchenko方程。
We solve inverse scattering problem for Schrödinger operators with compactly supported potentials on the half line. We discretize S-matrix: we take the value of the S-matrix on some infinite sequence of positive real numbers. Using this sequence obtained from S-matrix we recover uniquely the potential by a new explicit formula, without the Gelfand-Levitan-Marchenko equation.