论文标题
有条件归一流流的反问题的更快的不确定性定量
Faster Uncertainty Quantification for Inverse Problems with Conditional Normalizing Flows
论文作者
论文摘要
在反问题中,我们通常可以访问由配对样品组成的数据$(x,y)\ sim p_ {x,y}(x,y)$,其中$ y $是对物理系统的部分观察,而$ x $表示问题的未知数。在这种情况下,我们可以采用监督培训来学习解决方案$ x $及其从观察值$ y $中的不确定性。我们将此问题称为“监督”案件。但是,收集到的数据$ y \ sim p_ {y}(y)$可以与观察值$ y'\ sim p_ {y}'(y')$不同,与当前问题有关。在贝叶斯推论的背景下,我们提出了一个两步方案,该方案使用归一化的流和关节数据来训练条件发电机$q_θ(x | y)$,以近似目标后密度$ p_ {x | y}(x | y)$。此外,此初步阶段提供了密度函数$q_θ(x | y)$,可以作为“无监督”问题的先验重新铸造,例如,例如,当仅观测值$ y'\ sim p_ p_ {y}'(y}'(y')$,可能是$ y'| x $ x $ x'$ x'的可能性。然后,我们训练另一个具有输出密度$ q'_ϕ(x | y')$的可逆发电机,专门用于$ y'$,使我们可以从后$ p_ {x | y}'(x | y')$中采样。我们提出了一些综合结果,这些结果在重用验证的网络$q_θ(x | y')$作为温暖的开始或近似于近似$ p_ {x | y}'(x | y')$而不是从划痕学习。这种训练方式可以解释为转移学习的实例。该结果与使用昂贵的数值模拟的大规模反问题特别相关。
In inverse problems, we often have access to data consisting of paired samples $(x,y)\sim p_{X,Y}(x,y)$ where $y$ are partial observations of a physical system, and $x$ represents the unknowns of the problem. Under these circumstances, we can employ supervised training to learn a solution $x$ and its uncertainty from the observations $y$. We refer to this problem as the "supervised" case. However, the data $y\sim p_{Y}(y)$ collected at one point could be distributed differently than observations $y'\sim p_{Y}'(y')$, relevant for a current set of problems. In the context of Bayesian inference, we propose a two-step scheme, which makes use of normalizing flows and joint data to train a conditional generator $q_θ(x|y)$ to approximate the target posterior density $p_{X|Y}(x|y)$. Additionally, this preliminary phase provides a density function $q_θ(x|y)$, which can be recast as a prior for the "unsupervised" problem, e.g.~when only the observations $y'\sim p_{Y}'(y')$, a likelihood model $y'|x$, and a prior on $x'$ are known. We then train another invertible generator with output density $q'_ϕ(x|y')$ specifically for $y'$, allowing us to sample from the posterior $p_{X|Y}'(x|y')$. We present some synthetic results that demonstrate considerable training speedup when reusing the pretrained network $q_θ(x|y')$ as a warm start or preconditioning for approximating $p_{X|Y}'(x|y')$, instead of learning from scratch. This training modality can be interpreted as an instance of transfer learning. This result is particularly relevant for large-scale inverse problems that employ expensive numerical simulations.