论文标题

permo:从单个图像中立即感知更多以进行自主驾驶

PerMO: Perceiving More at Once from a Single Image for Autonomous Driving

论文作者

Lu, Feixiang, Liu, Zongdai, Song, Xibin, Zhou, Dingfu, Li, Wei, Miao, Hui, Liao, Miao, Zhang, Liangjun, Zhou, Bin, Yang, Ruigang, Manocha, Dinesh

论文摘要

我们提出了一种新颖的方法,可以从单个图像中检测,细分和重建车辆的完整纹理3D模型,以进行自主驾驶。我们的方法结合了深度学习的优势和传统技术的优雅性,从基于部分的可变形模型表示,在存在严重遮挡的情况下产生高质量的3D模型。我们提出了一种新的基于零件的变形车模型,该模型用于例如分割,并自动生成一个包含2D图像和3D模型之间密集对应关系的数据集。我们还提出了一个新颖的端到端深神经网络,以预测密集的2D/3D映射并突出其优势。根据密集的映射,我们能够以商品GPU的几乎交互速率计算精确的6-DOF姿势和3D重建结果。我们已经将这些算法与自主驾驶系统集成在一起。在实践中,我们的方法优于所有主要车辆解析任务的最新方法:2D实例分割的方法为4.4点(MAP),6-DOF姿势估计值为9.11点,而3D检测则以1.37为1.37。此外,我们已经在GitHub上发布了所有源代码,数据集和受过训练的模型。

We present a novel approach to detect, segment, and reconstruct complete textured 3D models of vehicles from a single image for autonomous driving. Our approach combines the strengths of deep learning and the elegance of traditional techniques from part-based deformable model representation to produce high-quality 3D models in the presence of severe occlusions. We present a new part-based deformable vehicle model that is used for instance segmentation and automatically generate a dataset that contains dense correspondences between 2D images and 3D models. We also present a novel end-to-end deep neural network to predict dense 2D/3D mapping and highlight its benefits. Based on the dense mapping, we are able to compute precise 6-DoF poses and 3D reconstruction results at almost interactive rates on a commodity GPU. We have integrated these algorithms with an autonomous driving system. In practice, our method outperforms the state-of-the-art methods for all major vehicle parsing tasks: 2D instance segmentation by 4.4 points (mAP), 6-DoF pose estimation by 9.11 points, and 3D detection by 1.37. Moreover, we have released all of the source code, dataset, and the trained model on Github.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源