论文标题

奥德赛:特洛伊木马模型的创建,分析和检测

Odyssey: Creation, Analysis and Detection of Trojan Models

论文作者

Edraki, Marzieh, Karim, Nazmul, Rahnavard, Nazanin, Mian, Ajmal, Shah, Mubarak

论文摘要

随着深度神经网络(DNN)模型的成功,将这些模型完整性的威胁引起了威胁。最近的威胁是特洛伊木马攻击,攻击者通过将触发器插入一些训练样本,并训练模型以恶意行动仅对包含触发器的样本进行恶意采取行动,从而干扰了训练管道。由于对触发因素的知识是攻击者的特权,因此对特洛伊木网网络的检测具有挑战性。现有的特洛伊木马检测器对触发器和攻击的类型做出了强烈的假设。我们提出了一个基于内在DNN特性分析的检测器。由于木马过程而受到影响。为了进行全面的分析,我们开发了Odysseus,这是迄今为止拥有3,000多个清洁和特洛伊木马型号的最多样化的数据集。奥德修斯涵盖了大量攻击;通过利用触发设计和源来定位类映射的多功能性生成。我们的分析结果表明,特洛伊木马的攻击会影响清洁数据多种多样的分类器边缘和决策边界的形状。利用这两个因素,我们提出了一个有效的特洛伊木马检测器,该检测器在不了解攻击的情况下运行,并明显胜过现有方法。通过一组全面的实验,我们证明了检测器对跨模型体系结构,看不见的触发器和正则化模型的功效。

Along with the success of deep neural network (DNN) models, rise the threats to the integrity of these models. A recent threat is the Trojan attack where an attacker interferes with the training pipeline by inserting triggers into some of the training samples and trains the model to act maliciously only for samples that contain the trigger. Since the knowledge of triggers is privy to the attacker, detection of Trojan networks is challenging. Existing Trojan detectors make strong assumptions about the types of triggers and attacks. We propose a detector that is based on the analysis of the intrinsic DNN properties; that are affected due to the Trojaning process. For a comprehensive analysis, we develop Odysseus, the most diverse dataset to date with over 3,000 clean and Trojan models. Odysseus covers a large spectrum of attacks; generated by leveraging the versatility in trigger designs and source to target class mappings. Our analysis results show that Trojan attacks affect the classifier margin and shape of decision boundary around the manifold of clean data. Exploiting these two factors, we propose an efficient Trojan detector that operates without any knowledge of the attack and significantly outperforms existing methods. Through a comprehensive set of experiments we demonstrate the efficacy of the detector on cross model architectures, unseen Triggers and regularized models.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源