论文标题

基于视频的远程生理测量通过交叉验证的特征解开

Video-based Remote Physiological Measurement via Cross-verified Feature Disentangling

论文作者

Niu, Xuesong, Yu, Zitong, Han, Hu, Li, Xiaobai, Shan, Shiguang, Zhao, Guoying

论文摘要

远程生理测量值,例如基于远程光绘画(RPPG)的心率(HR),心率变异性(HRV)和呼吸频率(RF)测量,在应用程序场景中越来越重要的角色在接触测量不便或不可能或不可能的情况下扮演。由于生理信号的幅度很小,因此很容易受到头部运动,照明条件和传感器多样性的影响。为了应对这些挑战,我们提出了一个交叉验证的特征分离策略,以通过非生理表示的生理特征解开生理特征,然后使用蒸馏的生理特征进行可靠的多任务多任务生理测量。我们首先将输入面视频转换为多尺度的时空图(MSTMAP),该图可以抑制无关的背景和噪声特征,同时保留了周期性生理信号的大多数时间特征。然后,我们将成对的MSTMAP作为具有两个编码器的自动编码器结构的输入(一个用于生理信号,另一个用于非生理信息),并使用跨验证方案来获得与非生理特征分散的生理特征。最终使用了分离的特征,用于联合预测多个生理信号,例如平均HR值和RPPG信号。关于多个生理测量任务的不同大规模公共数据集以及跨数据库测试的全面实验证明了我们方法的鲁棒性。

Remote physiological measurements, e.g., remote photoplethysmography (rPPG) based heart rate (HR), heart rate variability (HRV) and respiration frequency (RF) measuring, are playing more and more important roles under the application scenarios where contact measurement is inconvenient or impossible. Since the amplitude of the physiological signals is very small, they can be easily affected by head movements, lighting conditions, and sensor diversities. To address these challenges, we propose a cross-verified feature disentangling strategy to disentangle the physiological features with non-physiological representations, and then use the distilled physiological features for robust multi-task physiological measurements. We first transform the input face videos into a multi-scale spatial-temporal map (MSTmap), which can suppress the irrelevant background and noise features while retaining most of the temporal characteristics of the periodic physiological signals. Then we take pairwise MSTmaps as inputs to an autoencoder architecture with two encoders (one for physiological signals and the other for non-physiological information) and use a cross-verified scheme to obtain physiological features disentangled with the non-physiological features. The disentangled features are finally used for the joint prediction of multiple physiological signals like average HR values and rPPG signals. Comprehensive experiments on different large-scale public datasets of multiple physiological measurement tasks as well as the cross-database testing demonstrate the robustness of our approach.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源