论文标题

可转移的校准,较低的偏差和域适应性方差

Transferable Calibration with Lower Bias and Variance in Domain Adaptation

论文作者

Wang, Ximei, Long, Mingsheng, Wang, Jianmin, Jordan, Michael I.

论文摘要

域适应(DA)使学习机从标记的源域转移到未标记的目标。尽管已经取得了显着的进步,但大多数现有的DA方法都集中在提高推理目标准确性。如何估计DA模型的预测不确定性对于在安全至关重要的情况下的决策至关重要,但仍然是要探索的边界。在本文中,我们深入研究了DA中的校准问题,由于域移动的共存和缺乏目标标签,这极具挑战性。我们首先揭示了DA模型以较高的概率为代价学习更高准确性的困境。在这一发现的驱动下,我们提出了可转移的校准(Transcal),以实现更准确的校准,并在统一的无参数优化框架中降低偏差和差异。作为一种一般的事后校准方法,可以轻松地应用经刻录来重新校准现有的DA方法。从理论和经验上讲,它的功效已被证明是合理的。

Domain Adaptation (DA) enables transferring a learning machine from a labeled source domain to an unlabeled target one. While remarkable advances have been made, most of the existing DA methods focus on improving the target accuracy at inference. How to estimate the predictive uncertainty of DA models is vital for decision-making in safety-critical scenarios but remains the boundary to explore. In this paper, we delve into the open problem of Calibration in DA, which is extremely challenging due to the coexistence of domain shift and the lack of target labels. We first reveal the dilemma that DA models learn higher accuracy at the expense of well-calibrated probabilities. Driven by this finding, we propose Transferable Calibration (TransCal) to achieve more accurate calibration with lower bias and variance in a unified hyperparameter-free optimization framework. As a general post-hoc calibration method, TransCal can be easily applied to recalibrate existing DA methods. Its efficacy has been justified both theoretically and empirically.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源