论文标题
用于剪切查询的图形问题的量子算法
Quantum algorithms for graph problems with cut queries
论文作者
论文摘要
让$ g $是带有$ m $边缘的$ n $ vertex图。当被问及一个子集$ s $顶点时,$ g $上的剪切查询返回$ g $的边缘数量,这些边数正好在$ s $中。我们表明,有一个有界的量子量子算法,该算法在制作$ o(\ log(n)^6)$许多剪切查询后确定$ g $的所有连接组件。相比之下,它得出的是通信复杂性的结果,即任何随机算法甚至可以决定是否连接图形,都必须使至少$ω(n/\ log(n))$许多切割查询。我们进一步表明,使用$ o(\ log(n)^8)$许多切割的查询,量子算法易于高概率输出的量子算法,以$ g $ $ g $。 在证明这些结果的途径中,我们设计了使用剪切查询学习图形的量子算法。我们表明,量子算法可以在$ o(d \ log(n)^2)$上学习具有最高度$ d $的图形$,并且可以学习带有$ o(\ sqrt {m} \ log(n)^{3/2})的常规图。这两个上限与poly-logarithmic因子紧密相比,与$ω(dn)$和$ω(m/\ log(n))$相比,分别针对同一问题的随机算法所需的切割查询数量的下限。 我们结果中的关键因素是伯恩斯坦 - 维济兰尼算法,近似于“或查询”的计数,以及从内部产物中学习稀疏的向量,就像压缩感测一样。
Let $G$ be an $n$-vertex graph with $m$ edges. When asked a subset $S$ of vertices, a cut query on $G$ returns the number of edges of $G$ that have exactly one endpoint in $S$. We show that there is a bounded-error quantum algorithm that determines all connected components of $G$ after making $O(\log(n)^6)$ many cut queries. In contrast, it follows from results in communication complexity that any randomized algorithm even just to decide whether the graph is connected or not must make at least $Ω(n/\log(n))$ many cut queries. We further show that with $O(\log(n)^8)$ many cut queries a quantum algorithm can with high probability output a spanning forest for $G$. En route to proving these results, we design quantum algorithms for learning a graph using cut queries. We show that a quantum algorithm can learn a graph with maximum degree $d$ after $O(d \log(n)^2)$ many cut queries, and can learn a general graph with $O(\sqrt{m} \log(n)^{3/2})$ many cut queries. These two upper bounds are tight up to the poly-logarithmic factors, and compare to $Ω(dn)$ and $Ω(m/\log(n))$ lower bounds on the number of cut queries needed by a randomized algorithm for the same problems, respectively. The key ingredients in our results are the Bernstein-Vazirani algorithm, approximate counting with "OR queries", and learning sparse vectors from inner products as in compressed sensing.