论文标题

MLIP包:MPI和主动学习的力矩张量电势

The MLIP package: Moment Tensor Potentials with MPI and Active Learning

论文作者

Novikov, Ivan S., Gubaev, Konstantin, Podryabinkin, Evgeny V., Shapeev, Alexander V.

论文摘要

本文的主题是构建机器学习间潜能的技术(“如何”),而不是使用机器学习电位的原子模拟的科学(“什么”和“为什么”)。即,我们说明了如何使用MLIP软件包中实现的主动学习来构建力矩张量电势,重点介绍了训练集的采样方法的有效方法,如何扩展训练集会改变预测的错误,如何以成本效益的方式进行初始计算等。 https://mlip.skoltech.ru/download/。

The subject of this paper is the technology (the "how") of constructing machine-learning interatomic potentials, rather than science (the "what" and "why") of atomistic simulations using machine-learning potentials. Namely, we illustrate how to construct moment tensor potentials using active learning as implemented in the MLIP package, focusing on the efficient ways to sample configurations for the training set, how expanding the training set changes the error of predictions, how to set up ab initio calculations in a cost-effective manner, etc. The MLIP package (short for Machine-Learning Interatomic Potentials) is available at https://mlip.skoltech.ru/download/.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源