论文标题

检测人类对象与动作共同介绍的相互作用

Detecting Human-Object Interactions with Action Co-occurrence Priors

论文作者

Kim, Dong-Jin, Sun, Xiao, Choi, Jinsoo, Lin, Stephen, Kweon, In So

论文摘要

人类对象相互作用(HOI)检测任务中的一个常见问题是,许多HOI类仅具有少数标记的示例,从而导致训练集具有长尾分布的。缺乏积极标签会导致这些类别的分类准确性较低。为了解决这个问题,我们观察到人类对象相互作用之间存在自然相关性和反相关性。在本文中,我们将相关性建模为行动共晶矩阵和目前的学习技术,并利用它们进行更有效的培训,尤其是在罕见类中。我们的方法的实用性在实验中得到了证明,我们的方法的性能超过了两个领先的HOI检测基准数据集(HICO-DET和V-COCO)的最新方法。

A common problem in human-object interaction (HOI) detection task is that numerous HOI classes have only a small number of labeled examples, resulting in training sets with a long-tailed distribution. The lack of positive labels can lead to low classification accuracy for these classes. Towards addressing this issue, we observe that there exist natural correlations and anti-correlations among human-object interactions. In this paper, we model the correlations as action co-occurrence matrices and present techniques to learn these priors and leverage them for more effective training, especially in rare classes. The utility of our approach is demonstrated experimentally, where the performance of our approach exceeds the state-of-the-art methods on both of the two leading HOI detection benchmark datasets, HICO-Det and V-COCO.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源