论文标题

迈向自动肥皂注意:从医学对话中分类话语

Towards an Automated SOAP Note: Classifying Utterances from Medical Conversations

论文作者

Schloss, Benjamin, Konam, Sandeep

论文摘要

医疗对话产生的摘要可以改善对患者护理计划的回忆和理解,并减轻医生的文件负担。自动语音识别(ASR)和自然语言理解(NLU)的最新进展提供了潜在的解决方案,可以自动生成这些摘要,但缺乏严格的定量基准,用于在该领域进行基准研究。在本文中,我们弥合了这两个任务的差距:根据(i)肥皂部分和(ii)演讲者角色对医学对话进行分类。两者都是沿着通往端到端的自动肥皂说明的基本构建块,用于医疗对话。我们在数据集上提供详细信息,该数据集包含医学对话的人类和ASR抄录以及相应的机器学习优化的肥皂笔记。然后,我们提出了一个系统的分析,在该分析中,我们将现有的深度学习体系结构调整为上述两个任务。结果表明,以层次结构的方式建模上下文(同时捕获单词和话语级别上下文)可以对两个分类任务进行实质性改进。此外,我们开发并分析了一种模块化方法,以使我们的模型适应ASR输出。

Summaries generated from medical conversations can improve recall and understanding of care plans for patients and reduce documentation burden for doctors. Recent advancements in automatic speech recognition (ASR) and natural language understanding (NLU) offer potential solutions to generate these summaries automatically, but rigorous quantitative baselines for benchmarking research in this domain are lacking. In this paper, we bridge this gap for two tasks: classifying utterances from medical conversations according to (i) the SOAP section and (ii) the speaker role. Both are fundamental building blocks along the path towards an end-to-end, automated SOAP note for medical conversations. We provide details on a dataset that contains human and ASR transcriptions of medical conversations and corresponding machine learning optimized SOAP notes. We then present a systematic analysis in which we adapt an existing deep learning architecture to the two aforementioned tasks. The results suggest that modelling context in a hierarchical manner, which captures both word and utterance level context, yields substantial improvements on both classification tasks. Additionally, we develop and analyze a modular method for adapting our model to ASR output.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源