论文标题

无监督的形状正态度度量用于严重性量化

Unsupervised Shape Normality Metric for Severity Quantification

论文作者

Tao, Wenzheng, Bhalodia, Riddhish, Anstadt, Erin, Kavan, Ladislav, Whitaker, Ross T., Goldstein, Jesse A.

论文摘要

这项工作描述了一种无监督的方法,可以客观地量化一般解剖形状的异常。解剖畸形的严重程度通常是患者临床管理中的决定因素。但是,专家个体之间的经验偏见和独特的随机残留物在诊断和患者管理决策方面带来了差异,无论客观畸形程度如何。因此,考虑到不可避免地保留人类偏见和不一致的病理样本的标记,监督方法容易被误导。此外,相对于正常人群,证明特定病理学的受试者自然是罕见的。为了避免通过充分利用正常样本的功能来依靠足够的病理样本,我们提出了形状正态度量(SNM),这仅需要从正常样本中学习,并且对病理的了解为零。我们通过从数据自动推断出的地标表示形状,并通过多元高斯分布对正常组进行建模。在包括头骨,股骨,肩cap骨和Humeri在内的不同解剖数据集上进行的广泛实验表明,SNM可以提供有效的正态度测量,可以显着检测并指示病理学。因此,SNM在各种临床应用中都具有有希望的价值。

This work describes an unsupervised method to objectively quantify the abnormality of general anatomical shapes. The severity of an anatomical deformity often serves as a determinant in the clinical management of patients. However, experiential bias and distinctive random residuals among specialist individuals bring variability in diagnosis and patient management decisions, irrespective of the objective deformity degree. Therefore, supervised methods are prone to be misled given insufficient labeling of pathological samples that inevitably preserve human bias and inconsistency. Furthermore, subjects demonstrating a specific pathology are naturally rare relative to the normal population. To avoid relying on sufficient pathological samples by fully utilizing the power of normal samples, we propose the shape normality metric (SNM), which requires learning only from normal samples and zero knowledge about the pathology. We represent shapes by landmarks automatically inferred from the data and model the normal group by a multivariate Gaussian distribution. Extensive experiments on different anatomical datasets, including skulls, femurs, scapulae, and humeri, demonstrate that SNM can provide an effective normality measurement, which can significantly detect and indicate pathology. Therefore, SNM offers promising value in a variety of clinical applications.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源