论文标题

一种新的启发的模块化功能,适用于无监督的学习涉及空间嵌入式网络:比较分析

A new nature inspired modularity function adapted for unsupervised learning involving spatially embedded networks: A comparative analysis

论文作者

Kishore, Raj, Nussinov, Zohar, Sahu, Kisor Kumar

论文摘要

在许多传统的工程学科中,无监督的机器学习方法可能有很大的帮助,在许多传统的工程学科中,大量的标记数据不容易获得,或者非常困难或非常昂贵。两个具体的例子包括颗粒状材料的结构和金属玻璃的原子结构。尽管前者对于数十亿美元的全球行业至关重要,但后者仍然是基本科学的一个重要难题。在两个示例中,一件事都是常见的是,粒子是嵌入在欧几里得空间中的合奏的元素,并且可以创建一个空间嵌入的网络来表示其关键特征。最近的一些研究表明,群集通常是指无监督的学习,它在分区这些网络方面具有巨大的希望。在许多复杂的网络中,节点的空间信息在确定网络属性中起着非常重要的作用。因此,了解此类网络的结构至关重要。我们已经将新开发的模块化函数的性能与一些众所周知的模块化函数进行了比较。我们通过在2D和3D颗粒组件中找到最佳分区进行了比较。我们表明,对于本文考虑的一类网络,我们的方法比竞争方法产生的结果要好得多。

Unsupervised machine learning methods can be of great help in many traditional engineering disciplines, where huge amount of labeled data is not readily available or is extremely difficult or costly to generate. Two specific examples include the structure of granular materials and atomic structure of metallic glasses. While the former is critically important for several hundreds of billion dollars global industries, the latter is still a big puzzle in fundamental science. One thing is common in both the examples is that the particles are the elements of the ensembles that are embedded in Euclidean space and one can create a spatially embedded network to represent their key features. Some recent studies show that clustering, which generically refers to unsupervised learning, holds great promise in partitioning these networks. In many complex networks, the spatial information of nodes play very important role in determining the network properties. So understanding the structure of such networks is very crucial. We have compared the performance of our newly developed modularity function with some of the well-known modularity functions. We performed this comparison by finding the best partition in 2D and 3D granular assemblies. We show that for the class of networks considered in this article, our method produce much better results than the competing methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源