论文标题

AABO:自适应锚盒优化,以通过贝叶斯子采样来检测对象检测

AABO: Adaptive Anchor Box Optimization for Object Detection via Bayesian Sub-sampling

论文作者

Ma, Wenshuo, Tian, Tingzhong, Xu, Hang, Huang, Yimin, Li, Zhenguo

论文摘要

大多数最新的对象检测系统遵循基于锚的图。在图像上密集提出了锚箱,并且对网络进行了训练,以预测框位置的偏移以及分类置信度。现有系统预定锚盒形状和尺寸以及临时启发式调整用于定义锚构型。但是,当采用新的数据集或新模型时,这可能是最佳的,甚至是错误的。在本文中,我们研究了自动优化锚点框以进行对象检测的问题。我们首先证明锚定,锚量表和比率是可靠对象检测系统的关键因素。通过仔细分析功能层次结构上的现有边界框图案,我们设计了一个灵活且紧密的高参数空间,用于锚定配置。然后,我们提出了一种名为AABO的新型高参数优化方法,以确定某个数据集的更合适的锚固框,其中将贝叶斯优化和子采样方法组合在一起以实现精确有效的锚构型优化。实验证明了我们提出的方法对不同检测器和数据集的有效性,例如可可的地图改进约2.4%,ADE的1.6%和VG的1.6%,最佳锚可以通过仅通过优化锚固型配置,例如。将面膜RCNN从40.3%提高到42.3%,而HTC检测器将其从46.8%提高到48.2%。

Most state-of-the-art object detection systems follow an anchor-based diagram. Anchor boxes are densely proposed over the images and the network is trained to predict the boxes position offset as well as the classification confidence. Existing systems pre-define anchor box shapes and sizes and ad-hoc heuristic adjustments are used to define the anchor configurations. However, this might be sub-optimal or even wrong when a new dataset or a new model is adopted. In this paper, we study the problem of automatically optimizing anchor boxes for object detection. We first demonstrate that the number of anchors, anchor scales and ratios are crucial factors for a reliable object detection system. By carefully analyzing the existing bounding box patterns on the feature hierarchy, we design a flexible and tight hyper-parameter space for anchor configurations. Then we propose a novel hyper-parameter optimization method named AABO to determine more appropriate anchor boxes for a certain dataset, in which Bayesian Optimization and subsampling method are combined to achieve precise and efficient anchor configuration optimization. Experiments demonstrate the effectiveness of our proposed method on different detectors and datasets, e.g. achieving around 2.4% mAP improvement on COCO, 1.6% on ADE and 1.5% on VG, and the optimal anchors can bring 1.4% to 2.4% mAP improvement on SOTA detectors by only optimizing anchor configurations, e.g. boosting Mask RCNN from 40.3% to 42.3%, and HTC detector from 46.8% to 48.2%.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源