论文标题

很少有缺陷分段利用正常背景正规化和作物和束缚操作利用丰富的正常训练样本

Few-Shot Defect Segmentation Leveraging Abundant Normal Training Samples Through Normal Background Regularization and Crop-and-Paste Operation

论文作者

Lin, Dongyun, Cao, Yanpeng, Zhu, Wenbing, Li, Yiqun

论文摘要

在工业产品质量评估中,必须确定产品是否没有缺陷并进一步分析异常性的严重性。为此,对产品图像的准确缺陷分割提供了重要的功能。在工业检查任务中,常见的是捕获丰富的无缺陷图像样本,但非常有限的图像样本。因此,仅使用少数注释的异常训练图像来开发自动和准确的缺陷分割系统至关重要。本文通过足够的正常(无缺陷)训练图像来应对挑战性的少数缺陷分段任务,但很少有异常。我们通过将丰富的无缺陷图像纳入训练Unet的编码器描述器缺陷分段网络来提出两种有效的正则化技术。我们首先提出了正常的背景正则损失(NBR)损失,该损失通过分割损失共同最小化,从而增强了编码器网络以为正常区域产生独特的表示。其次,我们将有缺陷的区域裁剪为随机选择的正常图像以进行数据增强,并提出了加权二进制的跨透明拷贝损失,从而通过强调基于特征级相似性比较的更现实的作物和塑造的增强图像来增强训练。这两种技术均在由Resnet-34反封的编码器分割网络上实现,用于几个弹药缺陷分段。在最近发布的具有高分辨率工业图像的MVTEC异常检测数据集上进行了广泛的实验。在1-shot和5-shot缺陷分割设置下,该建议的方法显着优于几种基准测试方法。

In industrial product quality assessment, it is essential to determine whether a product is defect-free and further analyze the severity of anomality. To this end, accurate defect segmentation on images of products provides an important functionality. In industrial inspection tasks, it is common to capture abundant defect-free image samples but very limited anomalous ones. Therefore, it is critical to develop automatic and accurate defect segmentation systems using only a small number of annotated anomalous training images. This paper tackles the challenging few-shot defect segmentation task with sufficient normal (defect-free) training images but very few anomalous ones. We present two effective regularization techniques via incorporating abundant defect-free images into the training of a UNet-like encoder-decoder defect segmentation network. We first propose a Normal Background Regularization (NBR) loss which is jointly minimized with the segmentation loss, enhancing the encoder network to produce distinctive representations for normal regions. Secondly, we crop/paste defective regions to the randomly selected normal images for data augmentation and propose a weighted binary cross-entropy loss to enhance the training by emphasizing more realistic crop-and-pasted augmented images based on feature-level similarity comparison. Both techniques are implemented on an encoder-decoder segmentation network backboned by ResNet-34 for few-shot defect segmentation. Extensive experiments are conducted on the recently released MVTec Anomaly Detection dataset with high-resolution industrial images. Under both 1-shot and 5-shot defect segmentation settings, the proposed method significantly outperforms several benchmarking methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源