论文标题
反向传播梯度表示异常检测
Backpropagated Gradient Representations for Anomaly Detection
论文作者
论文摘要
明确区分正常数据和异常数据的学习表示是对异常检测成功的关键。大多数现有的异常检测算法都使用正向传播中的激活表示,而不是从反向传播中利用梯度来表征数据。梯度捕获模型更新以表示数据。与普通数据相比,异常需要更激烈的模型更新以完全表示它们。因此,我们提出了对反向传播梯度的利用,作为表征异常模型行为的表示,因此检测了此类异常。我们表明,使用基于梯度表示的建议方法在基准图像识别数据集中实现了最先进的异常检测性能。此外,我们强调了所提出方法的计算效率和简单性与依靠对抗网络或自回归模型的其他最先进方法相比,该方法的模型参数至少比提议的方法高27倍。
Learning representations that clearly distinguish between normal and abnormal data is key to the success of anomaly detection. Most of existing anomaly detection algorithms use activation representations from forward propagation while not exploiting gradients from backpropagation to characterize data. Gradients capture model updates required to represent data. Anomalies require more drastic model updates to fully represent them compared to normal data. Hence, we propose the utilization of backpropagated gradients as representations to characterize model behavior on anomalies and, consequently, detect such anomalies. We show that the proposed method using gradient-based representations achieves state-of-the-art anomaly detection performance in benchmark image recognition datasets. Also, we highlight the computational efficiency and the simplicity of the proposed method in comparison with other state-of-the-art methods relying on adversarial networks or autoregressive models, which require at least 27 times more model parameters than the proposed method.