论文标题

欧几里得的明确表达式,长度为$ 2^k $的自偶联循环代码$ {\ rm gr}(\ rm gr}(4,m)$

An explicit expression for Euclidean self-dual cyclic codes of length $2^k$ over Galois ring ${\rm GR}(4,m)$

论文作者

Cao, Yuan, Cao, Yonglin, ling, San, Wang, Guidong

论文摘要

对于任何积极的整数$ m $和$ k $,现有文献仅确定galois ring $ {\ rm gr}(4,m)$的所有欧几里得自偶型循环代码,例如$ 2^k $。代码加密。 (2012)63:105--112]。使用这些矩阵的特定类型和列向量的矩阵的Kronecker产品的属性,我们提供了一种简单有效的方法,可以精确地构造所有这些自偶会循环代码。在此基础上,我们使用组合数字提供了明确的表达式,以准确地表示所有不同的欧几里得自偶会循环代码,$ {\ rm gr}(4,m)$,使用组合数字。作为一个应用程序,我们列出了$ {\ rm gr}(\ rm gr}(4,m)长度$ 2^k $的所有不同的欧双循环代码,$ k = 4,5,6 $。

For any positive integers $m$ and $k$, existing literature only determines the number of all Euclidean self-dual cyclic codes of length $2^k$ over the Galois ring ${\rm GR}(4,m)$, such as in [Des. Codes Cryptogr. (2012) 63:105--112]. Using properties for Kronecker products of matrices of a specific type and column vectors of these matrices, we give a simple and efficient method to construct all these self-dual cyclic codes precisely. On this basis, we provide an explicit expression to accurately represent all distinct Euclidean self-dual cyclic codes of length $2^k$ over ${\rm GR}(4,m)$, using combination numbers. As an application, we list all distinct Euclidean self-dual cyclic codes over ${\rm GR}(4,m)$ of length $2^k$ explicitly, for $k=4,5,6$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源