论文标题

具有任意轴对称形状的微晶状体的最佳滑动速度

Optimal slip velocities of micro-swimmers with arbitrary axisymmetric shapes

论文作者

Guo, Hanliang, Zhu, Hai, Liu, Ruowen, Bonnet, Marc, Veerapaneni, Shravan

论文摘要

本文提出了一种计算方法,用于确定悬浮在粘性流体中的任何给定形状上的最佳滑移速度。目的是最大程度地减少功率损失,以保持目标游泳速度,或等效地提高微型游动器的效率。由于控制流体运动的Stokes方程的线性性,我们表明该PDE受限的优化问题将减少到更简单的二次优化问题,其解决方案是使用高阶精确边界积分方法发现的。我们考虑通过减少体积和计算其游泳效率来参数形状的各种家族。 {其中,发现倾斜的球体是给定减少体积的最有效的微型磁带形状。我们提出了一个简单的基于形状的标量指标,可以确定给定形状上的最佳滑移是否使其成为推动器,拉拔器或中性游泳者。}

This article presents a computational approach for determining the optimal slip velocities on any given shape of an axisymmetric micro-swimmer suspended in a viscous fluid. The objective is to minimize the power loss to maintain a target swimming speed, or equivalently to maximize the efficiency of the micro-swimmer. Owing to the linearity of the Stokes equations governing the fluid motion, we show that this PDE-constrained optimization problem reduces to a simpler quadratic optimization problem, whose solution is found using a high-order accurate boundary integral method. We consider various families of shapes parameterized by the reduced volume and compute their swimming efficiency. {Among those, prolate spheroids were found to be the most efficient micro-swimmer shapes for a given reduced volume. We propose a simple shape-based scalar metric that can determine whether the optimal slip on a given shape makes it a pusher, a puller, or a neutral swimmer.}

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源