论文标题

平方根的二阶扩展卡尔曼滤波方法,用于估计平稳时变参数

A Square-Root Second-Order Extended Kalman Filtering Approach for Estimating Smoothly Time-Varying Parameters

论文作者

Fisher, Zachary F., Chow, Sy-Miin, Molenaar, Peter C. M., Fredrickson, Barbara L., Pipiras, Vladas, Gates, Kathleen M.

论文摘要

收集密集纵向数据(ILD)的研究人员越来越多地寻求建模心理过程,例如情绪动态,这些过程以复杂而有意义的方式在时间上组织和适应。对于希望表征干预对个人行为的影响的研究人员也是如此。为了有用,统计模型必须能够将这些过程表征为复杂的,时间依赖的现象,否则只有一部分系统动力学才能恢复。在本文中,我们介绍了一种方形二阶扩展卡尔曼滤波方法,用于估计平稳的时变参数。这种方法能够处理动态因子模型,在这种因素模型中,感兴趣过程基础的变量之间的关系以可能很难预先指定的方式变化。我们在蒙特卡洛模拟中检查了方法的性能,并显示了所提出的算法准确地恢复了未观察到的状态,而在具有时变动态和治疗效果的双变量动态因子模型的情况下。此外,我们说明了我们的方法在表征冥想干预对日常情感体验的时变作用方面的实用性。

Researchers collecting intensive longitudinal data (ILD) are increasingly looking to model psychological processes, such as emotional dynamics, that organize and adapt across time in complex and meaningful ways. This is also the case for researchers looking to characterize the impact of an intervention on individual behavior. To be useful, statistical models must be capable of characterizing these processes as complex, time-dependent phenomenon, otherwise only a fraction of the system dynamics will be recovered. In this paper we introduce a Square-Root Second-Order Extended Kalman Filtering approach for estimating smoothly time-varying parameters. This approach is capable of handling dynamic factor models where the relations between variables underlying the processes of interest change in a manner that may be difficult to specify in advance. We examine the performance of our approach in a Monte Carlo simulation and show the proposed algorithm accurately recovers the unobserved states in the case of a bivariate dynamic factor model with time-varying dynamics and treatment effects. Furthermore, we illustrate the utility of our approach in characterizing the time-varying effect of a meditation intervention on day-to-day emotional experiences.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源