论文标题
机器学习用于预测电子动力学的分子哈密顿量
Machine Learning a Molecular Hamiltonian for Predicting Electron Dynamics
论文作者
论文摘要
我们开发了一种计算方法,可以从电子密度的基质值时间序列中学习分子哈密顿矩阵。正如我们为三个小分子所证明的那样,所得的哈密顿量可以用于电子密度演化,即使在训练数据之外传播1000个时间步长,也会产生高度准确的结果。作为一个更严格的测试,我们使用学识渊博的哈密顿人在存在的电场的存在下模拟电子动力学,从而推断出超出了无现场训练数据的问题。我们发现,我们所学到的哈密顿人预测的由此产生的电子动力学与地面真理有着密切的定量一致。我们的方法依赖于将哈密顿量的降低维,线性统计模型与量子liouville方程的时间差不多结合在一起,这是在时间依赖性的Hartree Fock理论中。我们使用最小二乘求解器训练该模型,避免了许多CPU密集型优化步骤。对于无现场和现场问题,我们量化了培训和传播错误,突出了未来发展的领域。
We develop a computational method to learn a molecular Hamiltonian matrix from matrix-valued time series of the electron density. As we demonstrate for three small molecules, the resulting Hamiltonians can be used for electron density evolution, producing highly accurate results even when propagating 1000 time steps beyond the training data. As a more rigorous test, we use the learned Hamiltonians to simulate electron dynamics in the presence of an applied electric field, extrapolating to a problem that is beyond the field-free training data. We find that the resulting electron dynamics predicted by our learned Hamiltonian are in close quantitative agreement with the ground truth. Our method relies on combining a reduced-dimensional, linear statistical model of the Hamiltonian with a time-discretization of the quantum Liouville equation within time-dependent Hartree Fock theory. We train the model using a least-squares solver, avoiding numerous, CPU-intensive optimization steps. For both field-free and field-on problems, we quantify training and propagation errors, highlighting areas for future development.