论文标题
无线网络中BF的能量复杂性
The Energy Complexity of BFS in Radio Networks
论文作者
论文摘要
我们考虑无线电网络中能量复杂性的模型,在该模型中,在通道上传输或聆听的费用为一个能量和计算单位是免费的。这种简化的模型捕获了电池动力传感器的关键方面:电池寿命受收发器使用率最大的影响,并且在低传输功率下,传输和聆听的实际成本非常相似。 众所周知,单跳网络中任务的能量复杂性。 Chang等人的最新工作。在多跳网络中考虑了能源复杂性,并表明$ \ mathsf {broadcast} $接受了一个节能协议,我们的意思是网络中的$ n $节点中的每个节点都花费$ o(\ text {polylog}(n))$ energy。这项工作打开了一个奇怪的可能性,即多跳网络中的所有自然问题都可能承认这样的节能解决方案。 在本文中,我们证明了能量复杂性的景观足以支持多种问题复杂性。 $ \ MATHSF {broadcast} $可以通过节能协议来解决,而精确的计算$ \ Mathsf {Diameter} $不能,需要$ω(n)$ energy。我们的主要结果是,$ \ mathsf {bractth first search} $具有$ 2^{o(\ sqrt {\ log n \ log \ log \ log \ log n})} = n^{o(1)} $;它是否承认有效的$ o(\ text {polylog}(n))$ - 能量协议是一个开放的问题。 我们的主要算法涉及在Miller,Peng和Xu引入的群集图上递归解决广义的BFS问题。在此应用程序中,我们在此集群图中的距离与原始网络中的距离之间的距离之间的密切关系至关重要。这种关系是新的,可能具有独立的利益。
We consider a model of energy complexity in Radio Networks in which transmitting or listening on the channel costs one unit of energy and computation is free. This simplified model captures key aspects of battery-powered sensors: that battery life is most influenced by transceiver usage, and that at low transmission powers, the actual cost of transmitting and listening are very similar. The energy complexity of tasks in single-hop networks is well understood. Recent work of Chang et al. considered energy complexity in multi-hop networks and showed that $\mathsf{Broadcast}$ admits an energy-efficient protocol, by which we mean each of the $n$ nodes in the network spends $O(\text{polylog}(n))$ energy. This work left open the strange possibility that all natural problems in multi-hop networks might admit such an energy-efficient solution. In this paper we prove that the landscape of energy complexity is rich enough to support a multitude of problem complexities. Whereas $\mathsf{Broadcast}$ can be solved by an energy-efficient protocol, exact computation of $\mathsf{Diameter}$ cannot, requiring $Ω(n)$ energy. Our main result is that $\mathsf{Breadth First Search}$ has sub-polynomial energy complexity at most $2^{O(\sqrt{\log n\log\log n})}=n^{o(1)}$; whether it admits an efficient $O(\text{polylog}(n))$-energy protocol is an open problem. Our main algorithm involves recursively solving a generalized BFS problem on a cluster graph introduced by Miller, Peng, and Xu. In this application, we make crucial use of a close relationship between distances in this cluster graph, and distances in the original network. This relationship is new and may be of independent interest.