论文标题

旨在联合学习最佳MAC信号和无线通道访问

Towards Joint Learning of Optimal MAC Signaling and Wireless Channel Access

论文作者

Valcarce, Alvaro, Hoydis, Jakob

论文摘要

通信协议是网络节点使用的语言。在用户设备(UE)可以与基站(BS)交换数据之前,它必须首先协商该传输的条件和参数。该协商通过协议堆栈的所有层次的信号消息来支持。每年,移动通信行业都定义和标准化这些信息,这些信息是由人类在冗长的技术(且通常是政治上)辩论中设计的。按照此标准化工作,开发阶段开始了,该行业在其中解释和实现了由此产生的标准。但是,这种大规模发展是实施给定协议的唯一方法吗?我们解决了收音机是否可以学习预授予的目标方案的问题,这是迈向发展自己的中间步骤。此外,我们训练蜂窝收音机以出现在目标协议的约束下最佳执行的通道访问策略。我们表明,通过超过专家系统的提高,多机构增强学习(MARL)和学习对交流(L2C)技术实现了这一目标。最后,我们提供了有关这些结果向训练中从未见过的方案的转移性的见解。

Communication protocols are the languages used by network nodes. Before a user equipment (UE) can exchange data with a base station (BS), it must first negotiate the conditions and parameters for that transmission. This negotiation is supported by signaling messages at all layers of the protocol stack. Each year, the mobile communications industry defines and standardizes these messages, which are designed by humans during lengthy technical (and often political) debates. Following this standardization effort, the development phase begins, wherein the industry interprets and implements the resulting standards. But is this massive development undertaking the only way to implement a given protocol? We address the question of whether radios can learn a pre-given target protocol as an intermediate step towards evolving their own. Furthermore, we train cellular radios to emerge a channel access policy that performs optimally under the constraints of the target protocol. We show that multi-agent reinforcement learning (MARL) and learning-to-communicate (L2C) techniques achieve this goal with gains over expert systems. Finally, we provide insight into the transferability of these results to scenarios never seen during training.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源