论文标题

极性抗铁磁杂种杂种有机无机钙钛矿中的可调旋转纹理通过电场和磁场

Tunable spin textures in polar antiferromagnetic hybrid organic inorganic perovskites by electric and magnetic fields

论文作者

Lou, Feng, Gu, Teng, Ji, Junyi, Feng, Junsheng, Xiang, Hongjun, Stroppa, Alessandro

论文摘要

混合有机无机钙钛矿(HOIP)引起了人们对新型光电设备的潜在应用的关注。值得注意的是,发现Rashba频带分裂以及K空间中的特定自旋方向(即自旋纹理)与光电性能相关。在这项工作中,通过使用第一原理计算和对称分析,我们研究了抗铁磁磁性(AFM)HOIP铁电TMCM_MNCL3(TMCM =(CH3)3NCH2CL,三甲基氯甲基氨基)的电偏振,磁性和自旋纹理特性。最近合成的化合物是有序障碍和位移型铁电的原型,具有较大的压电反应,高铁电转换温度和出色的光致发光特性[You等,Science 357,306(2017)]。最有趣的结果是,与旋转轨道耦合耦合的反转对称性破裂会产生类似Rashba的频带分裂和相关的稳健持续旋转纹理(PST)和/或典型的螺旋旋转纹理,这可以通过AFM磁性磁性量的afto affm磁性参数来调整,这可以通过调谐。切换AFM订单参数后自旋纹理的可调节性在很大程度上没有探索,我们的发现不仅提供了一个平台来了解AFM旋转纹理的物理,而且还支持AFM Hoip Ferroelectrics作为一类有希望的光电材料类。

The hybrid organic inorganic perovskites (HOIPs) have attracted much attention for their potential applications as novel optoelectronic devices. Remarkably, the Rashba band splitting, together with specific spin orientations in k space (i.e., spin texture), has been found to be relevant for the optoelectronic performances. In this work, by using first principles calculations and symmetry analyses, we study the electric polarization, magnetism, and spin texture properties of the antiferromagnetic (AFM) HOIP ferroelectric TMCM_MnCl3 (TMCM = (CH3)3NCH2Cl, trimethylchloromethyl ammonium). This recently synthesized compound is a prototype of order disorder and displacement-type ferroelectric with a large piezoelectric response, high ferroelectric transition temperature, and excellent photoluminescence properties [You et al., Science 357, 306 (2017)]. The most interesting result is that the inversion symmetry breaking coupled to the spin orbit coupling gives rise to a Rashba-like band splitting and a related robust persistent spin texture (PST) and/or typical spiral spin texture, which can be manipulated by tuning the ferroelectric or, surprisingly, also by the AFM magnetic order parameter. The tunability of spin texture upon switching of AFM order parameter is largely unexplored and our findings not only provide a platform to understand the physics of AFM spin texture but also support the AFM HOIP ferroelectrics as a promising class of optoelectronic materials.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源