论文标题

非本地空间传播网络,以完成深度完成

Non-Local Spatial Propagation Network for Depth Completion

论文作者

Park, Jinsun, Joo, Kyungdon, Hu, Zhe, Liu, Chi-Kuei, Kweon, In So

论文摘要

在本文中,我们提出了一个可靠,有效的端到端非本地空间传播网络,以实现深度完成。所提出的网络将RGB和稀疏深度图像作为输入和估计每个像素的非本地邻居及其亲和力,以及具有像素智能感知的初始深度图。然后,基于预测的非本地邻居和相应的亲和力,通过其置信度和非本地空间传播程序进行迭代深度预测。与以前利用固定本地邻居的算法不同,所提出的算法有效地避免了当地邻居无关,并集中于传播过程中相关的非本地邻居。此外,我们引入了可学习的亲和力归一化,以更好地学习与常规方法相比的亲和力组合。所提出的算法本质上对深度边界上的混合深度问题具有强大的核心,这是现有深度估计/完成算法的主要问题之一。室内和室外数据集的实验结果表明,就深度完成精度和鲁棒性而言,所提出的算法优于常规算法。我们的实施在项目页面上公开可用。

In this paper, we propose a robust and efficient end-to-end non-local spatial propagation network for depth completion. The proposed network takes RGB and sparse depth images as inputs and estimates non-local neighbors and their affinities of each pixel, as well as an initial depth map with pixel-wise confidences. The initial depth prediction is then iteratively refined by its confidence and non-local spatial propagation procedure based on the predicted non-local neighbors and corresponding affinities. Unlike previous algorithms that utilize fixed-local neighbors, the proposed algorithm effectively avoids irrelevant local neighbors and concentrates on relevant non-local neighbors during propagation. In addition, we introduce a learnable affinity normalization to better learn the affinity combinations compared to conventional methods. The proposed algorithm is inherently robust to the mixed-depth problem on depth boundaries, which is one of the major issues for existing depth estimation/completion algorithms. Experimental results on indoor and outdoor datasets demonstrate that the proposed algorithm is superior to conventional algorithms in terms of depth completion accuracy and robustness to the mixed-depth problem. Our implementation is publicly available on the project page.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源