论文标题

在指数迭代下以给定速率逃到无穷大的点的尺寸

On the dimension of points which escape to infinity at given rate under exponential iteration

论文作者

Barański, Krzysztof, Karpińska, Bogusława

论文摘要

我们证明了有关Hausdorff的许多结果和在指数映射的非自治迭代下以给定速率逃脱(至少平均)到无穷大的点集的填料维度。特别是,我们概括了Sixsmith在2016年证明的结果,并回答了他关于指数地图的环形行程的问题。

We prove a number of results concerning the Hausdorff and packing dimension of sets of points which escape (at least in average) to infinity at a given rate under non-autonomous iteration of exponential maps. In particular, we generalize the results proved by Sixsmith in 2016 and answer his question on annular itineraries for exponential maps.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源