论文标题
在指数迭代下以给定速率逃到无穷大的点的尺寸
On the dimension of points which escape to infinity at given rate under exponential iteration
论文作者
论文摘要
我们证明了有关Hausdorff的许多结果和在指数映射的非自治迭代下以给定速率逃脱(至少平均)到无穷大的点集的填料维度。特别是,我们概括了Sixsmith在2016年证明的结果,并回答了他关于指数地图的环形行程的问题。
We prove a number of results concerning the Hausdorff and packing dimension of sets of points which escape (at least in average) to infinity at a given rate under non-autonomous iteration of exponential maps. In particular, we generalize the results proved by Sixsmith in 2016 and answer his question on annular itineraries for exponential maps.