论文标题
量子非线性$σ$ - 模型RG流量和虫洞几何形状的集成性
The quantum non-linear $σ$-model RG flow and integrability in wormhole geometries
论文作者
论文摘要
非线性$σ$ - 模型的目标空间是Riemannian歧管。尽管可以是任何Riemannian度量,但值得研究的某些身体上有趣的几何形状。在这里,我们从数值上进化了一个球体对称的渐近渐近平面虫洞的时间对称叶子,在非线性$σ$ -MODEL,RICCI流量的$ 1 $ -Loop重新归一化组流量下,RICCI流量,以及$ 2 $ -2 $摇动近似,RG-2流量。我们依靠从紧凑型案例改编的一些定理来研究不同虫洞类型的演变,尤其是那些具有较高曲率区域的虫洞类型的演变。但是,一些指标扩大了,而其他指标则在流动开始时收缩,但是,所有指标都在一定时间捏。这与以下事实相关:当流动的起始几何形状是莫里斯 - thorne虫洞的空间部分时,流量不会收敛到固定点,因此流量不可融合,因此相应的非线性$σ$ - 模型是不可融合/可缩减的。我们提出了一项关于虫洞奇异性在三个维度扩展理论估计的数值研究。最后,我们计算汉密尔顿熵和棕色能量的演变。
The target space of the non-linear $σ$-model is a Riemannian manifold. Although it can be any Riemannian metric, there are certain physically interesting geometries which are worth to study. Here, we numerically evolve the time-symmetric foliations of a family of spherically symmetric asymptotically flat wormholes under the $1$-loop renormalization group flow of the non-linear $σ$-model, the Ricci flow, and under the $2$-loop approximation, RG-2 flow. We rely over some theorems adapted from the compact case for studying the evolution of different wormhole types, specially those with high curvature zones. Some metrics expand and others contract at the beginning of the flow, however, all metrics pinch-off at a certain time. This is related with the fact that the flow does not converge to a fixed point when its starting geometry is the spatial sections of a Morris-Thorne wormhole, and therefore the corresponding non-linear $σ$-model is non-integrable/renormalizable. We present a numerical study of the evolution of wormhole singularities in three dimensions extending the theoretical estimations. Finally, we compute the evolution of the Hamilton's entropy and the Brown-York energy.