论文标题

Chebyshev多项式方法至Landauer-Büttiker量子运输中的纳米结构中的量子。

Chebyshev Polynomial Method to Landauer-Büttiker Formula of Quantum Transport in Nanostructures

论文作者

Yu, Yan, Zhang, Yan-Yang, Liu, Lei, Wang, Si-Si, Guan, Ji-Huan, Xia, Yang, Li, Shu-Shen

论文摘要

Landauer-Büttiker公式描述了纳米结构和分子中的电子量子传输。由于矩阵反转计算,因此对复杂或大尺寸系统的模拟将是数字要求的。最近,由于并行化的高效率,Chebyshev多项式方法在量子系统的数值模拟中引起了强烈的兴趣,因为它唯一涉及的矩阵操作只是稀疏矩阵和向量的产物。在孤立或散装量子结构的物理量的Chebyshev多项式表示上,已经取得了许多进展。在这里,我们将Chebyshev多项式方法介绍给典型的电子散射问题,即Landauer-Büttiker用于纳米结构中量子传输的电导的公式。我们首先根据标准浴缸多项式方法(KPM)描述完整算法。然后,我们提出了两个简单但有效的改进。其中一个的时间消耗远小于没有kpm的直接矩阵计算。还提供了一些典型的例子来说明数值有效性。

Landauer-Büttiker formula describes the electronic quantum transports in nanostructures and molecules. It will be numerically demanding for simulations of complex or large size systems due to, for example, matrix inversion calculations. Recently, Chebyshev polynomial method has attracted intense interests in numerical simulations of quantum systems due to the high efficiency in parallelization, because the only matrix operation it involves is just the product of sparse matrices and vectors. Many progresses have been made on the Chebyshev polynomial representations of physical quantities for isolated or bulk quantum structures. Here we present the Chebyshev polynomial method to the typical electronic scattering problem, the Landauer-Büttiker formula for the conductance of quantum transports in nanostructures. We first describe the full algorithm based on the standard bath kernel polynomial method (KPM). Then, we present two simple butefficient improvements. One of them has a time consumption remarkably less than the direct matrix calculation without KPM. Some typical examples are also presented to illustrate the numerical effectiveness.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源