论文标题
二进制相关测量
Binary Correlation Measurements
论文作者
论文摘要
我们搜索一种最简单,最小的方法来确定给定的量子系统是纠缠还是可分离。对于此目的,我们提出了二进制相关测量,其中仅对零或非零相关性的限制知识可用。我们考虑对两个颗粒的纯状态进行的具体研究,每个粒子具有两个基态(2x2系统)。我们表明,即使通过二进制相关测量的有限信息,我们仍然可以达到三个纠缠检测的三个测量值的最低。接下来,我们考虑适用于混合密度矩阵的可比问题。混合量子情况似乎需要更多详细的信息,我们通过研究Werner密度矩阵的具体示例来说明这一点。
We search a simplest and minimal way to determine whether a given quantum system is entangled or separable. For this end, we propose binary correlation measurements in which restricted knowledge of only zero or non-zero correlations is available. We consider the concrete investigation on a pure state for two particles, each particle having two basis states (the 2x2 system). We show that, even with this limited information from the binary correlation measurements, we can still reach the known minimum of three measurements for entanglement detection. We next consider the comparable problem applied to the mixed density matrix. The mixed quantum case appears to require more detailed information, which we illustrate by studying the concrete example of the Werner density matrix.