论文标题
关于解决魔方的算法
On Algorithms for Solving the Rubik's Cube
论文作者
论文摘要
在本文中,我们提出了一种新颖的算法及其三种用于更有效地解决魔方的变体。该算法可用于在$ o(\ frac {n^2} {\ log n})$移动中求解完整的$ n \ times n \ times n $ cube。在某些情况下,对于SpeedCuber,该算法也可能有用。我们将证明我们的算法始终有效,然后对算法进行基本分析,以确定其$ O(n^2)$的算法复杂性。最后,我们将这种复杂性进一步优化为$ o(\ frac {n^2} {\ log n})$。
In this paper, we present a novel algorithm and its three variations for solving the Rubik's cube more efficiently. This algorithm can be used to solve the complete $n \times n \times n$ cube in $O(\frac{n^2}{\log n})$ moves. This algorithm can also be useful in certain cases for speedcubers. We will prove that our algorithm always works and then perform a basic analysis on the algorithm to determine its algorithmic complexity of $O(n^2)$. Finally, we further optimize this complexity to $O(\frac{n^2}{\log n})$.