论文标题

简单连接空间的表示同源

Representation homology of simply connected spaces

论文作者

Berest, Yuri, Ramadoss, Ajay C., Yeung, Wai-Kit

论文摘要

让$ g $是一个特征零的字段$ k $定义的仿射代数组。我们在$ x $的基数上研究了G-Local系统的衍生模量空间。此派生的模量空间由Aggine DG方案RLOC $ _G(X,*)$:我们称为RLOC $ _G(x,*)$ $ g $中的$ x $的代表同源性的结构捆(CO)同源性,并用hr $ _*(x,g)$表示。 HR $ _0(x,g)$是代表变量的坐标环$ _g [π_1(x)] $的坐标环,$ g $的$ x $ in $ g $的基本组是$ g $的$ x $ - 一个众所周知的代数数字不变$ x $,其中许多应用于拓扑。当X被简单地连接的情况似乎较少研究:在这种情况下,HR $ _0(x,g)$是微不足道的,但较高的表示同源性仍然是$ x $的有趣理性不变性,具体取决于代数组$ g $。在本文中,我们使用理性同义理论来计算任意连接的空间$ x $(有限理性类型)的HR $ _*(x,g)$(其Quillen和Sullivan代数模型)。当$ g $还原时,我们还计算了代表同源性的$ g $ invariant部分,hr $ _*(x,g)^g $,并研究hr $ _*(x,g)^g $何时没有本地有限的类型作为分级的交换性代数。事实证明,这个问题与所谓的强大麦克唐纳猜想密切相关,这是B. Feigin和P. Hanlon在1980年代提出的代表理论(作为一种猜想)的著名结果,并由S. Fishel,I。Grojnowski和I. Grojnowski和C. teleman证明了2008年的强大概述,$。 HR $ _*(x,g)^g $是任何复杂的还原组$ g $的分级对称代数。

Let $G$ be an affine algebraic group defined over field $k$ of characteristic zero. We study the derived moduli space of G-local systems on a pointed connected CW complex X trivialized at the basepoint of $X$. This derived moduli space is represented by an affine DG scheme RLoc$_G(X,*)$: we call the (co)homology of the structure sheaf of RLoc$_G(X,*)$ the representation homology of $X$ in $G$ and denote it by HR$_*(X,G)$. The HR$_0(X,G)$ is isomorphic to the coordinate ring of the representation variety Rep$_G[π_1(X)]$ of the fundamental group of $X$ in $G$ -- a well-known algebro-geometric invariant of $X$ with many applications in topology. The case when X is simply connected seems much less studied: in this case, the HR$_0(X,G)$ is trivial but the higher representation homology is still an interesting rational invariant of $X$ depending on the algebraic group $G$. In this paper, we use rational homotopy theory to compute the HR$_*(X,G)$ for an arbitrary simply connected space $X$ (of finite rational type) in terms of its Quillen and Sullivan algebraic models. When $G$ is reductive, we also compute the $G$-invariant part of representation homology, HR$_*(X,G)^G$, and study the question when HR$_*(X,G)^G$ is free of locally finite type as a graded commutative algebra. This question turns out to be closely related to the so-called Strong Macdonald Conjecture, a celebrated result in representation theory proposed (as a conjecture) by B. Feigin and P. Hanlon in the 1980s and proved by S. Fishel, I. Grojnowski and C. Teleman in 2008. Reformulating the Strong Macdonald Conjecture in topological terms, we give a simple characterization of spaces $X$ for which HR$_*(X,G)^G$ is a graded symmetric algebra for any complex reductive group $G$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源