论文标题

Navier-Stokes方程的关键规律性标准根据速度的一个方向导数

Critical regularity criteria for Navier-Stokes equations in terms of one directional derivative of the velocity

论文作者

Chen, Hui, Fang, Daoyuan, Zhang, Ting

论文摘要

在本文中,我们考虑了整个空间中的3D Navier-Stokes方程。我们研究了一些新的不等式,\ textit {a先验}估计值以速度字段的一个方向导数提供了关键的规律标准,即$ \ partial_3 \ partbf {u} \ in l^p((0,t); l^q(l^q(l^q) \ frac {3} {q} = 2,〜\ frac {3} {2} <q \ leq 6 $。此外,我们将$ q $范围扩展而解决方案是轴对称的,即轴对称解决方案$ \ mathbf {m} {u} {u} $在$(0,t] $中是常规的,如果$(0,t] $,如果$ \ partial_3 u^3 \ in l^p(in l^p(0,t); l^q((0,t); l^q(l^q(\ sath q) \ frac {3} {q} = 2,〜\ frac {3} {2} <q <q <\ infty $。

In this paper, we consider the 3D Navier-Stokes equations in the whole space. We investigate some new inequalities and \textit{a priori} estimates to provide the critical regularity criteria in terms of one directional derivative of the velocity field, namely $\partial_3 \mathbf{u} \in L^p((0,T); L^q(\mathbb{R}^3)), ~\frac{2}{p} + \frac{3}{q} = 2, ~\frac{3}{2}<q\leq 6$. Moreover, we extend the range of $q$ while the solution is axisymmetric, i.e. the axisymmetric solution $\mathbf{m}{u}$ is regular in $(0,T]$, if $ \partial_3 u^3 \in L^p((0,T); L^q(\mathbb{R}^3)), ~\frac{2}{p} + \frac{3}{q} = 2, ~\frac{3}{2}<q< \infty$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源