论文标题
基础设施弹性的图形信号处理:适用性和未来方向
Graph Signal Processing for Infrastructure Resilience: Suitability and Future Directions
论文作者
论文摘要
图形信号处理(GSP)是开发出一种新兴字段,用于分析以图形为模型的不规则空间结构定义的信号。鉴于使用图理论的有关基础架构网络的弹性的大量文献,毫不奇怪的是,在弹性域中可以找到许多GSP的应用。 GSP技术假设图形傅立叶变换(GFT)的选择会根据感兴趣的信号赋予特定的光谱结构。我们在信号结构的指标上评估了许多电源分配系统,并确定了与系统属性的几个相关性,并进一步证明了这些指标与某些GSP技术的性能如何相关。我们还讨论了数据驱动方法的可行性,该方法可以改善这些指标并将其应用于水分配方案。总体而言,我们发现,分析的许多候选系统都是根据选定的GFT进行正确结构的,并且可以适合GSP技术,但是确定了值得未来研究的相当大的可变性和细微差异。
Graph signal processing (GSP) is an emerging field developed for analyzing signals defined on irregular spatial structures modeled as graphs. Given the considerable literature regarding the resilience of infrastructure networks using graph theory, it is not surprising that a number of applications of GSP can be found in the resilience domain. GSP techniques assume that the choice of graphical Fourier transform (GFT) imparts a particular spectral structure on the signal of interest. We assess a number of power distribution systems with respect to metrics of signal structure and identify several correlates to system properties and further demonstrate how these metrics relate to performance of some GSP techniques. We also discuss the feasibility of a data-driven approach that improves these metrics and apply it to a water distribution scenario. Overall, we find that many of the candidate systems analyzed are properly structured in the chosen GFT basis and amenable to GSP techniques, but identify considerable variability and nuance that merits future investigation.