论文标题

Nematic液晶的Landau-De Gennes能量的新代表

A new representation for the Landau-de Gennes energy of nematic liquid crystals

论文作者

Feng, Zhewen, Hong, Min-Chun

论文摘要

在关于列液液晶体的Landau-de Gennes理论中,众所周知的Landau-De Gennes能量取决于四个弹性常数。 $ L_1 $,$ L_2 $,$ L_3 $,$ L_4 $。对于$ L_4 \ neq 0 $的一般情况,Ball-Majumdar \ cite {bm}发现了一个例子,即Landau-de Gennes Energy来自物理学文献\ cite {Mn}不满足凝性条件,这在数学中导致能源最小化的数学存在问题。为了解决此问题,我们观察到,$ L_4 $上的原始三阶术语是Schiele和Trimper \ Cite \ Cite {ST}在物理学中提出的,是第四阶术语和第二阶术语的线性组合。因此,我们可以提出一种新的Landau-de Gennes Energy,该Energy等于单轴列nematic $ q $ tensors的原始能源。带有一般弹性常数的新的Landau-de Gennes能量满足了所有$ Q $ tensors的强制性条件,该条件在数学和物理理论之间建立了新的联系。与Majumdar-Zarnescu \ Cite {Mz}的工作类似,我们证明了新Landau-De Gennes Energy的最小化器的存在和收敛。此外,我们找到了一种研究Landau-De Gennes系统的限制问题的新方法,因为Ginzburg-Landau方程式上的跨产品方法\ Cite {Chen}对Landau-De Gennes系统不起作用。

In the Landau-de Gennes theory on nematic liquid crystals, the well-known Landau-de Gennes energy depends on four elastic constants; $L_1$, $L_2$, $L_3$, $L_4$. For the general case of $L_4\neq 0$, Ball-Majumdar \cite {BM} found an example that the Landau-de Gennes energy functional from physics literature \cite{MN} does not satisfy a coercivity condition, which causes a problem in mathematics to establish existence of energy minimizers. In order to solve this problem, we observe that the original third order term on $L_4$, proposed by Schiele and Trimper \cite{ST} in physics, is a linear combination of a fourth order term and a second order term. Therefore, we can propose a new Landau-de Gennes energy, which is equal to the original for uniaxial nematic $Q$-tensors. The new Landau-de Gennes energy with general elastic constants satisfies the coercivity condition for all $Q$-tensors, which establishes a new link between mathematical and physical theory. Similarly to the work of Majumdar-Zarnescu \cite{MZ}, we prove existence and convergence of minimizers of the new Landau-de Gennes energy. Moreover, we find a new way to study the limiting problem of the Landau-de Gennes system since the cross product method \cite{Chen} on the Ginzburg-Landau equation does not work for the Landau-de Gennes system.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源