论文标题
大规模异质网络表示学习的多语义元模型
A Multi-Semantic Metapath Model for Large Scale Heterogeneous Network Representation Learning
论文作者
论文摘要
已广泛研究网络嵌入,以建模和管理各种现实应用程序中的数据。但是,大多数现有的作品都集中在具有单型节点或边缘的网络上,并且考虑到不平衡的节点和边缘的分布不平衡。在实际应用程序中,网络通常由数十亿种具有丰富属性的节点和边缘组成。为了应对这些挑战,在本文中,我们提出了一个多语言元模型(MSM)模型,用于大规模异质表示学习。具体而言,我们生成基于多语言元的随机步道,以构建异质邻域以处理不平衡的分布,并为嵌入学习提供一个统一的框架。我们在两个具有挑战性的数据集上对拟议框架进行系统评估:亚马逊和阿里巴巴。结果从经验上表明,在链接预测上,MSM可以比以前的艺术品获得相对显着的收益。
Network Embedding has been widely studied to model and manage data in a variety of real-world applications. However, most existing works focus on networks with single-typed nodes or edges, with limited consideration of unbalanced distributions of nodes and edges. In real-world applications, networks usually consist of billions of various types of nodes and edges with abundant attributes. To tackle these challenges, in this paper we propose a multi-semantic metapath (MSM) model for large scale heterogeneous representation learning. Specifically, we generate multi-semantic metapath-based random walks to construct the heterogeneous neighborhood to handle the unbalanced distributions and propose a unified framework for the embedding learning. We conduct systematical evaluations for the proposed framework on two challenging datasets: Amazon and Alibaba. The results empirically demonstrate that MSM can achieve relatively significant gains over previous state-of-arts on link prediction.