论文标题

YGGDRASIL:多客户设置中的隐私意见双重重复数据删除

Yggdrasil: Privacy-aware Dual Deduplication in Multi Client Settings

论文作者

Sehat, Hadi, Pagnin, Elena, Lucani, Daniel E.

论文摘要

本文提出了Yggdrasil,这是一种在多客户设置中删除隐私性双重数据的协议。 Yggdrasil旨在减少云存储空间,同时保护客户外包数据的隐私。 Yggdrasil结合了三个创新工具来实现这一目标。首先,概括性重复数据删除,这是一种减少数据足迹的新兴技术。其次,不确定性的转换被紧凑并改善了云中数据压缩程度(跨用户)。第三,在上传之前,以轻巧的,隐私驱动的转换的形式在客户端进行数据预处理。这确保了试图检索客户实际数据的诚实但热情的云服务将面临有关原始数据是什么的高度不确定性。我们提供了数学分析,以衡量不确定性的度量以及协议的压缩潜力。我们对HDFS日志数据集的实验表明,可以实现49%的总体压缩,客户仅存储12%的隐私和云存储。这是在确保将每个片段上传到云的同时可以实现的,将有10^296来自客户端的原始字符串。可能会有更高的不确定性,并有所降低压缩势。

This paper proposes Yggdrasil, a protocol for privacy-aware dual data deduplication in multi client settings. Yggdrasil is designed to reduce the cloud storage space while safeguarding the privacy of the client's outsourced data. Yggdrasil combines three innovative tools to achieve this goal. First, generalized deduplication, an emerging technique to reduce data footprint. Second, non-deterministic transformations that are described compactly and improve the degree of data compression in the Cloud (across users). Third, data preprocessing in the clients in the form of lightweight, privacy-driven transformations prior to upload. This guarantees that an honest-but-curious Cloud service trying to retrieve the client's actual data will face a high degree of uncertainty as to what the original data is. We provide a mathematical analysis of the measure of uncertainty as well as the compression potential of our protocol. Our experiments with a HDFS log data set shows that 49% overall compression can be achieved, with clients storing only 12% for privacy and the Cloud storing the rest. This is achieved while ensuring that each fragment uploaded to the Cloud would have 10^296 possible original strings from the client. Higher uncertainty is possible, with some reduction of compression potential.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源