论文标题

算术中缩小球的量子牙齿量表

Quantum ergodicity for shrinking balls in arithmetic hyperbolic manifolds

论文作者

Chatzakos, Dimitrios, Frot, Robin, Raulf, Nicole

论文摘要

我们研究了量子独特的千古猜想的完善,以在算术双曲歧管上缩小球,重点是尺寸$ 2 $和$ 3 $。对于模块化表面$ \ mathrm {psl} _2({\ Mathbb z})\ BackSlash \ Mathbb {h}^2 $我们证明量子唯一独特的eRgodicition的失败,与Planck-Scale和量子差异的改进结合了。 对于算术$ 3 $ -Manifolds,我们表明,Hecke-Maaß形式的量子独特的巨像失败了,以算术点和半径$ r \ asymp t_j^{ - δ} $以$ ugunignmentimentpoint点和半径为中心。对于$ \ MATHRM {PSL} _2(\ Mathcal {o} _K)\ setMinus \ setMinus \ Mathbb {h}^3 $,带有$ \ Mathcal {o} _K} _K $是一个想象中的数字一级数字的整数,我们是普通的lindef lindef lindef lindef lindef,for lightsibib如果$Δ<2/5 $,则hecke-maa {ss}形式。此外,我们证明,如果$Δ<(1-2θ)/(34+4θ)$,$θ$是$ ramanujan-petersson cointoxenture的指数,则表明等均分配无条件地适用于艾森斯坦系列。对于$ \ mathrm {psl} _2(\ mathbb {z} [i])$,我们将最后一个指数提高到$Δ<(1-2θ)/(27+2θ)$。研究Hecke-Maaß$ L $ functions的平均林德尔估计,我们平均将最后一个指数提高到$Δ<2/5 $。 最后,我们研究了$ n $二维紧凑型算术双曲歧管的laplace本征函数的巨大不规则性。我们观察到,量子独特的千古性在缩小半径$ r \ asymp t^{ - δ_n+ε} $远离Planck-Scale的球上失败,$ n = 5/(n+1)$ for $ n \ geq 5 $。

We study a refinement of the quantum unique ergodicity conjecture for shrinking balls on arithmetic hyperbolic manifolds, with a focus on dimensions $ 2 $ and $ 3 $. For the Eisenstein series for the modular surface $\mathrm{PSL}_2( {\mathbb Z}) \backslash \mathbb{H}^2$ we prove failure of quantum unique ergodicity close to the Planck-scale and an improved bound for its quantum variance. For arithmetic $ 3 $-manifolds we show that quantum unique ergodicity of Hecke-Maaß forms fails on shrinking balls centered on an arithmetic point and radius $ R \asymp t_j^{-δ} $ with $ δ> 3/4 $. For $ \mathrm{PSL}_2(\mathcal{O}_K) \setminus \mathbb{H}^3 $ with $ \mathcal{O}_K $ being the ring of integers of an imaginary quadratic number field of class number one, we prove, conditionally on the generalized Lindelöf hypothesis, that equidistribution holds for Hecke-Maa{ss} forms if $ δ< 2/5 $. Furthermore, we prove that equidistribution holds unconditionally for the Eisenstein series if $ δ< (1-2θ)/(34+4θ) $ where $ θ$ is the exponent towards the Ramanujan-Petersson conjecture. For $ \mathrm{PSL}_2(\mathbb{Z}[i]) $ we improve the last exponent to $ δ< (1-2θ)/(27+2θ) $. Studying mean Lindelöf estimates for $ L $-functions of Hecke-Maaß forms we improve the last exponent on average to $ δ< 2/5$. Finally, we study massive irregularities for Laplace eigenfunctions on $ n $-dimensional compact arithmetic hyperbolic manifolds for $ n \geq 4 $. We observe that quantum unique ergodicity fails on shrinking balls of radii $ R \asymp t^{-δ_n+ε} $ away from the Planck-scale, with $ δ_n = 5/(n+1) $ for $ n \geq 5 $.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源