论文标题
混乱游戏多长时间?
How long is the Chaos Game?
论文作者
论文摘要
在1988年的教科书“无处不在分形”中,M。Barnsley引入了一种算法,用于通过随机过程来生成分形,他称之为“混乱游戏”。利用涵盖马尔可夫连锁店的经典理论的思想,我们证明了该程序所花费的预期时间以生成给定的自相似分形的$δ$ nendens子集满足开放设置条件的渐近公式。
In the 1988 textbook "Fractals Everywhere" M. Barnsley introduced an algorithm for generating fractals through a random procedure which he called the "chaos game". Using ideas from the classical theory of covering times of Markov chains we prove an asymptotic formula for the expected time taken by this procedure to generate a $δ$-dense subset of a given self-similar fractal satisfying the open set condition.